• 検索結果がありません。

講義案内 前田研究室 maedalab NumericalVib 1D

N/A
N/A
Protected

Academic year: 2018

シェア "講義案内 前田研究室 maedalab NumericalVib 1D"

Copied!
16
0
0

読み込み中.... (全文を見る)

全文

(1)

G G G

EEEOOO

S S S

CCCIIIEEENNNCCCEEE&&&

G G G

EEEOOO

E E E

NNNGGGIIINNNEEEEEERRRIIINNNGGG

L L L

AAABBB

1 質点線形系 振動解析

Numerical Analysis Method for a Mass with Linear-System in 1-D

x y

c k

m

m x

y k

c

Linear Vibration System

spring-dashpot-mass system spring mass

dashpot

structure system

-1質点系 振動 数学的厳密解(Mathematical Exact Solution)

- 応答 数値解法(Numerical Solutions) : 直接積分法(Direct Integration Method)

- 地震応答ス ク ル Earthquake Response Spectrum

運動方程式:

        t c x t kx t f t m y   t

x

m    

(1.1)

貫性力:相対加速度 + 減衰制振力:相対速度 + 復元力:相対変 外力 Inertia force viscous force recover force

釣合い式:

   

     0

m x t y t c x t kx t

(1.2)

貫性力:絶対加速度 + 減衰制振力:相対速度 + 復元力:相対変 0

m

: mass [kg]

k

: spring coefficient [kg/sec2]

c

: viscous damping coefficient [kg/sec]

  t

f

: external force applied to the mass

  t

y 

:

f   t

is replaced with acceleration of the ceiling and the ground

m y     t

according to D'Alembert’s law.

  t

x 

,

x    t

,

x   t

: relative acceleration[m/sec2], velocity[m/sec], and displacement[m] with respect to the ceiling or the ground, respectively

    t y t

x

: absolute displacement

  t

x

m  

: inertia force

(2)

G G G

EEEOOO

S S S

CCCIIIEEENNNCCCEEE&&&

G G G

EEEOOO

E E E

NNNGGGIIINNNEEEEEERRRIIINNNGGG

L L L

AAABBB

1. Mathematical Exact Solutions: Analytical results

1.1. 自由振動

F ree Vibration

:

  t 0

f

,

y     t 0

(1.3)

Linear and homogeneous differential equation solution = general solution

    t x t

x

g (1.4)

Characteristic Equation using differential operator

0

2

2

2

g o g

g

Dx x

x

D

(1.5)

D

: differential operator with respect to time differential (

D d dt

):

x

g

Dx

g and

 x

g

D

2

x

g.

m

c

 2

,

m

k

o2

(1.6)

: viscosity normalized by mass[1/sec]

o: referential angular frequency[1/sec] / natural circle frequency

m

k

T f

o o

o

2

2

1  

(1.7)

T

o: referential vibration period[sec] / natural period

f

o: referential vibration frequency[1/sec] / natural frequency

o

g

g

x

Dx

2

2 (1.8)

Vibration mode of the system clearly depends on the relative magnitude of viscous damping:

 

 

 

 

 

mk

c

mk

c

mk

c

o o o

2

0

2

0

2

0

2 2 2 2 2 2

vibr ation

damped

over

vibr ation

damped

cr itically

vibr ation

damped

nor mally

:

c

cr

2 mk

(1.9)

(3)

G G G

EEEOOO

S S S

CCCIIIEEENNNCCCEEE&&&

G G G

EEEOOO

E E E

NNNGGGIIINNNEEEEEERRRIIINNNGGG

L L L

AAABBB a) Normally damped vibration

parameters

mk

c

c

cr

2

, (2.10)

i

D

, (2.11)

2 2

2

 

o

, (2.12)

period

2

2

1

1

1

2

2

h

T

h

T

o

O

 

 

(2.13)

motions

 

 

 

 

 

t

A

B

t

B

A

e

t

x

t

A

B

t

B

A

e

t

x

t

B

t

A

e

t

x

g g

g g

t g

g g g

g t g

g g

t g





sin

2

cos

2

sin

cos

sin

cos

2 2 2

2

(2.14)

initial conditions

 

  

 

g g g

g g

B

A

x

A

x

0

0

(2.15)

therefore,

 

   

 

 

0

0

0

g g

g

g g

x

x

B

x

A

(2.16)

complex descriptions

     

       

       

 

 

t

i

i

C

al

t

x

t

i

i

C

al

t

x

t

i

C

al

t

x

g g

g g

g g

exp

Re

exp

Re

exp

Re

2

(2.17)

damping

Viscous damping coefficient

c

mk

c

cr

2

(2.18)

Viscosity normalized by mass

(4)

G G G

EEEOOO

S S S

CCCIIIEEENNNCCCEEE&&&

G G G

EEEOOO

E E E

NNNGGGIIINNNEEEEEERRRIIINNNGGG

L L L

AAABBB

m

c

 2

, (2.19)

Logarithmic damping factor

1

ln

n n

a

D a

(2.20)

Damping factor

o

cr

mk

c

c

h c

 2

(2.21)

   

2

1

1

ln 2

ln

h

T h

T

t

x

t

x

a

D a

n n

 

 

 

(2.22)

0 1 2 3 4 5

-2

-1

0

1

2

t(s)

x( t)

h=0

h=0.005

h=0.01

h=0.05

h=0.1

自由減衰振動

0 1 2 3 4 5

-2 -1 0 1 2

t(s)

x(t)

x

1

1

'

x

x

2

x

3

x

4

2

'

x x

3

'

4

'

x

'

T

t

1

t

2

(5)

G G G

EEEOOO

S S S

CCCIIIEEENNNCCCEEE&&&

G G G

EEEOOO

E E E

NNNGGGIIINNNEEEEEERRRIIINNNGGG

L L L

AAABBB 固有周期実測値(observed value of fundamental natural period)

structure H45m 高層 H 45m

S

T

1=0.061 N[]

T

1=0.079 N[]

SRC, RC

T

1=0.054 N[]

T

1=0.053 N[]

減衰定数実測値(observed value of damping factor) 鉄骨構造(Steel structure):

h

=2

鉄骨鉄筋コン 構造(Steel reinforced concrete structure):

h

=3 鉄筋コン 構造(Reinforced concrete structure)

h

=5 土:

h

=0~25

Here, if h<< 1, we can obtain,

 1

h

,

D 2 h

(2.23)

Consequently, we can estimate value of h by measuring D,

 1

h

,

2

h D

(2.24)

(6)

G G G

EEEOOO

S S S

CCCIIIEEENNNCCCEEE&&&

G G G

EEEOOO

E E E

NNNGGGIIINNNEEEEEERRRIIINNNGGG

L L L

AAABBB b) Critical damped vibration

parameters

mk

c

c

cr

2

, (2.25)

D

, (2.26)

2

0

2

2

o , (2.27)

period

 

T 2

(2.28)

motions

   

       

 

 

 

t

B

B

A

e

t

x

t

B

B

A

e

t

x

t

B

A

e

t

x

g g

g t g

g g

g t g

g g t g

3 2

2

2

2

(2.29)

initial conditions

 

  

 

g g g

g g

B

A

x

A

x

0

0

(2.30)

therefore,

 

   

 

0

0

0

g g

g

g g

x

x

B

x

A

(2.31)

c) Over damped vibration

parameters

mk

c

c

cr

2

, (2.32)

D

, (2.33)

2 2

2

  

o

, (2.34)

period

1

1

1

2

2

2

2

 h

T

h

T

o

O

(2.35)

(7)

G G G

EEEOOO

S S S

CCCIIIEEENNNCCCEEE&&&

G G G

EEEOOO

E E E

NNNGGGIIINNNEEEEEERRRIIINNNGGG

L L L

AAABBB

motions

   

       

 

 

 

t

A

B

t

B

A

e

t

x

t

A

B

t

B

A

e

t

x

t

B

t

A

e

t

x

g g

g g

t g

g g g

g t g

g g

t g





sinh

2

cosh

2

sinh

cosh

sinh

cosh

2 2 2

2

(2.36)

initial conditions

 

  

 

g g g

g g

B

A

x

A

x

0

0

(2.37)

therefore,

 

   

 

 

0

0

0

g g

g

g g

x

x

B

x

A

(2.38)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

0 2 4 6 8 10

過減衰

減衰振動

臨界減衰

An example for vibration behaviours with different h : normally damped, critical damped and over damped vibrations

(8)

G G G

EEEOOO

S S S

CCCIIIEEENNNCCCEEE&&&

G G G

EEEOOO

E E E

NNNGGGIIINNNEEEEEERRRIIINNNGGG

L L L

AAABBB

* Euler’s formula

e

ix

e

ix

x

2

cos 1

,

x e

ix

e

ix

2

sin 1

x i x   nx i nx

e

inx

cos sin

n

cos sin

* mechanical vibration system and electric circuit system

m x

k

c

spring

dashpot

spring-dashpot-mass system

electric circuit system

C

R L

f

m v cv k vdt

f 

x

v

Idt

RI C

I

L

e 1

q e

I

* mechanical vibration system and a control system in control engineering: PID control

K e dt

e T

dt K

K de

T

S

p

I p p

D c

1

Derivation control + Proportion control + Integration control PID

S

c: control signal

e

: error = target value – current value

(9)

G G G

EEEOOO

S S S

CCCIIIEEENNNCCCEEE&&&

G G G

EEEOOO

E E E

NNNGGGIIINNNEEEEEERRRIIINNNGGG

L L L

AAABBB 非線形解法 (Non-linear analysis of vibration by numerical method)

直接積分法(Direct Integration Method) 非線形運動方程式 数値積分 方法

差分法

- 時間領域 数値積分

Newmark β法: 実用的に最も用いら

t t    x t t x   t        t x t t x t t

x

 

  

2 2

2

1 

(2.39)

t t        x t t x t t xt t

x  1    

(2.40)

Newmark β 特別

手法

線形加速度法(Linear Acceleration Method) 0.5 1/6 中点加速度法(Constant Average Acceleration Method) 0.5 1/4

Wilson θ

t t    x t t x          t t x t tx t t    x t

x      

6

2

1

2 2

(2.41)

t t    x t t x   t txt t    x t

x

2

(2.42)

各種数値積分法 安定条件(stability condition of numerical integration)

手法 数値積分 安定条件 無条件安定条件

(unconditionally Stable)

Newmark β

1 4

2

 

o

t

0.5

1 4

Wilson θ

1 . 37

中央差分法

 2

t

o 最も大きい 振動数

(10)

G G G

EEEOOO

S S S

CCCIIIEEENNNCCCEEE&&&

G G G

EEEOOO

E E E

NNNGGGIIINNNEEEEEERRRIIINNNGGG

L L L

AAABBB

- 直接積分法

) 運動方程式 離散化

  t h x   t x   t y   t

x    

2

2

(2.43)

 

t t t

t t

t t

t t t

t t

t t

y

B

y

B

x

A

x

A

x

y

B

y

B

x

A

x

A

x

22 21

22 21

12 11

12

11 (2.44)

   

22 21

12 11

A

A

A

A A

,

 

 

 

22 21

12 11

B

B

B

B B

(2.45)

   

 

 

 

 

 

 

 

 

t t

t t

t t

t t t

y

B y

x

A x

x

x

(2.46)

t t t t t

t t

t

h x x y

x 

 

 2

2 (2.47)

t t t

t

h x x y

x    

2

2

(2.48)

t t t t t

t t

t

h x x y

x 

 

 2

2 (2.49)

Taylor Expansion

 

2

2 2

x t

t

x

x

x

tt

t

t

 

t

(2.50)

t

x

x

x

tt

t

t1

(2.51)

Taylor Expansion

t t    f t t f   t

1

f

t t

2

t t

(2.52)

        

2

2 2

t t

f

t

f

t

t

f

t

t

f 

t t

2

t t

(2.53)

) 代数方程式を計算

(1) Newmark β 挿方式

 

t t t

t

x x

x

2

1

,

x

t1

1 2 x

t

2 x

tt (2.54)

 

1 2 x 2 x  2 t

2

t

x

x

x

tt

t

t

 

t

 

tt

(2.55)

   x xt

x

x

tt

t

1

t

tt

(2.56)

    A ?

    B ?

(11)

G G G

EEEOOO

S S S

CCCIIIEEENNNCCCEEE&&&

G G G

EEEOOO

E E E

NNNGGGIIINNNEEEEEERRRIIINNNGGG

L L L

AAABBB

(2) Wilson θ 外挿方式

時間

t

t t

成立 運動方程式 時間

t t

(

1

) も成立

t t t t t

t t

t

h x x y

x 

 

 2

2 ,

1

(2.57)

   

t t t

t t

t t t t

t

y

y

y

x

x

x

1

1

(2.58)

   

 

 

 

 

 

  

 

 

 

  

t

x

x

x

x

x t

x

t

x

x

x

t t t

t t

t t t

t t t

 

 

2

1 2

2

3

1 3

2

(2.59)

In the case of

=1,

   

 

 

 

 

 

 

t

x

x

x

x

x t

x

t

x

x

x

t t t

t t

t t t

t t t

2

1

2

1

2

3

1

3

2

2

(2.60)

= Linear Acceleration Method (

=0.5,

=1/6)

(12)

G G G

EEEOOO

S S S

CCCIIIEEENNNCCCEEE&&&

G G G

EEEOOO

E E E

NNNGGGIIINNNEEEEEERRRIIINNNGGG

L L L

AAABBB - 地震応答ス Earthquake Response Spectrum

相対 変 応答ス (Displacement Response Spectrum):

x

相対 速度応答ス (Velocity Response Spectrum) :

x

絶対 加速度応答ス (Acceleration Response Spectrum) :

x y

  h T

S

d

,

: 最大相対変 応答値(Displacement Response Spectrum)

  h T

S

v

,

: 最大相対速度応答値(Velocity Response Spectrum)

  h T

S

a

,

: 最大絶対加速度応答値(Acceleration Response Spectrum)

Plots of maximum response values again selected parameters of the system or of forcing function (earthquake considered) are called ‘response spectra’.

For one-degree system, the natural period (or frequency) is the characteristic that determined its response to a given forcing function

⇒ ratio of maximum dynamic stress in a structure to the corresponding static stress

Calculation results of response for each of systems

one-degree systems with different natural periods (frequency)

input force (earthquake)

Maximum response values of systems

(13)

G G G

EEEOOO

S S S

CCCIIIEEENNNCCCEEE&&&

G G G

EEEOOO

E E E

NNNGGGIIINNNEEEEEERRRIIINNNGGG

L L L

AAABBB

v v

d

S

S T

S  2

1 

: 最大相対変 応答値(Displacement Response Spectrum)

v

v

S

S

: 最大相対速度応答値(Velocity Response Spectrum)

v v

a

S

S T

S 2

: 最大絶対加速度応答値(Acceleration Response Spectrum)

(2.61)

Sa vs period

Sv vs period

SD vs period

(14)

G G G

EEEOOO

S S S

CCCIIIEEENNNCCCEEE&&&

G G G

EEEOOO

E E E

NNNGGGIIINNNEEEEEERRRIIINNNGGG

L L L

AAABBB

3重応答ス ク ル Tripartite response spectrum

   

T

S

S

T

S

S

d v

a v

log

2

log

log

log

log

2

log

log

log

 

(2.62)

(15)

G G G

EEEOOO

S S S

CCCIIIEEENNNCCCEEE&&&

G G G

EEEOOO

E E E

NNNGGGIIINNNEEEEEERRRIIINNNGGG

L L L

AAABBB

- 応答ス ク ル response spectrum について

フ エ ス 地震波そ も 周波数特性 応答ス 構造物 1 質点

減衰系 含 地震動 全体像

モ 解析 modal analysis

加速度応答ス ク ル:地震力 ス シア係数(base shear coefficient) 動的震度 地震力

 

max

max

m x y

Q

(2.63)

ス シア係数(base shear coefficient)、動的震度

   

g

T

h

S

g

y

x

W

C Q

max

max

a

,

(2.64)

静的震度: 静的耐震設計

k

h

W

k

Q

max

h

(2.65)

速度応答ス ク ル:地震動 構造物 与え 最大 エネ

最大 みエネ (strain energy):

 

max 2

2

1 k x

(2.66)

単 質量あ 最大エネ :

 

2 2 max 2

max

2

1

2

1

2

1

S

v

x

m x

k  

 

(2.67)

(maximum energy per unit mass)

ス 強度(Spectral intensity):

I

h

2.5

S

v

h T dT

1 .

0

( , )

(2.68)

変位応答ス ク ル: み 大 さ~応力 大 さ 最大 断力:

max

max

k x

Q

(2.69)

x y

max

kx

max

m

(2.70)

(16)

G G G

EEEOOO

S S S

CCCIIIEEENNNCCCEEE&&&

G G G

EEEOOO

E E E

NNNGGGIIINNNEEEEEERRRIIINNNGGG

L L L

AAABBB ---

[Recommended text]

William Weaver, Jr., Stephen P. Timoshenko, Donovan H. Young; Vibration problems in engineering, 5th edition(?), Wiley Interscience.

参照

関連したドキュメント

In this paper we give the Nim value analysis of this game and show its relationship with Beatty’s Theorem.. The game is a one-pile counter pickup game for which the maximum number

Given a homogeneous linear discrete or continuous dynamical system, its stability index is given by the dimension of the stable manifold of the zero solution.. In particular, for the

ELMAHI, An existence theorem for a strongly nonlinear elliptic prob- lems in Orlicz spaces, Nonlinear Anal.. ELMAHI, A strongly nonlinear elliptic equation having natural growth

She reviews the status of a number of interrelated problems on diameters of graphs, including: (i) degree/diameter problem, (ii) order/degree problem, (iii) given n, D, D 0 ,

Theorem 4.8 shows that the addition of the nonlocal term to local diffusion pro- duces similar early pattern results when compared to the pure local case considered in [33].. Lemma

In [9] a free energy encoding marked length spectra of closed geodesics was introduced, thus our objective is to analyze facts of the free energy of herein comparing with the

Maria Cecilia Zanardi, São Paulo State University (UNESP), Guaratinguetá, 12516-410 São Paulo,

For further analysis of the effects of seasonality, three chaotic attractors as well as a Poincar´e section the Poincar´e section is a classical technique for analyzing dynamic