• 検索結果がありません。

Method of analysis

ドキュメント内 Barometer Coefficients of High Latitude Neutron Monitors (ページ 34-44)

550    ‥  600 Atmospheric

7. Quantitative Relation of theぺBarometer Coefficient       and the Cosmic Ray Primary Spectrum

7.1. Method of analysis

The counting rate of the neutron monitor at time £is expressed by

NCR。, p, t)ニエフY(とR, P)i(yメ)ぷ・ (7.1)

where Re is the vertical cutoff rigidity, p is theごatmospheric pressure or・ depth, YCR, p) is the yield function, andバ凡O is the rigidity spectrum of primary cosmic ray flux.

Substituting eqト(7.1) into eqバ6.2)にwe have the barometer coe:fficientβin place of 況 c as

(7.2)

From eq. (7.2) it is clear that the barometer coefficienトis dependent on the primary cosmic ray spectrum.       \

 Let the primary spectrum be      ‥‥‥‥‥‥‥‥‥  ‥‥‥ ‥‥‥‥       ‥‥

Barometer Coefficients of High Latitude Neutron Monitors (Kusunose)

バ私・O=j。(R)十SiiR, t)

 43

(7.3)

whereみ(召)is the spectrum of non‑modulated galactic cosmic rays near the earth and δ j(召バ)is for the modulated termトFrom e4バ7.1) and eq. (7.3), the intensity of the

secondary cosmic ray at a cutoff rigidity R。and an atmospheric depth p is

jv(拓、p、t)= 工:

YCR, p)几{R)dR十

      =凰(R・,.pミ)+6N(R。, p, t)

where N.。and ∂N are defined respectively by

and

乱(R。、p)=

6N(R。、p、礼)こ

工:

Y{R, p)6j(R, t)dR

y(R, P)i。(R) dR,

y(R、p)○(凡 t)dR.

The barometer coefficient for the non‑modulated spectrum is

β。(凡,μ)=

NoiRc, P) dp

(7.4)

(7.5)

(7.6)

(7.7)

and the coefficient for the modulated spectrum is       βr (Re,・ p' t)∠ぷV(7?j

j・,Z)嗇∂N(R。p, t)。        (7.8) In eq. (7.8), it is clear that the definition of βパs the same as in eq. (6.5).

 Relation between the coefficient β

1 and the primary variation spectrum 5j/i。is expressed by using eq. (7.6) and eq. (7.8) as follows:

β、(R。、p、t)=

£フ∂y(ぶ'‑^Sj(R, OdR エフy(私夕)司(私t)dl?

By using the response function F{R, p) = YiR, P)ノ。CR),we rewrite eq. (7.9) as

       ・・∂F(R, P)3j(R, t)

影[芦゛白

うj

ブ

ズ土佐]ぎ

From the definition of the response∇function・and eq.(7.5), we have      ,      凰(R。,p)=エフF(R, p)dR,

then we can write as

      F(凡p)=−∂呪諮'ρ)。

(7.9)

(7.10)

(7.13)

(7.14)

7。2. Computation       ▽

 Now let us begin to calculate the variation rate a r of the barometer coefficientβby using eq. (7.14). It can be computed from the rigidityトdependence of the sea level barometer coefficient β。iR, p) and the cosmic ray neutron intensity N, iR, p)。

data points is used in the later computation.

 Figure 19 shows the rigidity dependence of the barometer coefficient of the neutron monitor. The solid circles are the values estimated .竹刀armichael et al. (1968) from 1965

‑ 1966 survey data. Further extrapolation must be made for the computation of higher rigidity rangeレThe eχtrapolatedcurve is shown in Fig√20.\

 The rigidity dependence of neutron intensity in 1965 is shown in Fig. 18, where dots represent the values given by Carmichel and Bercovitch (1969)……:\Asmoothed curve fitted to

44 Res. Rep. Kochi Univ. Vol. 46j(1997) Nat.

Differentiating by p, we have         ∂'F(R,P)

砂 ニー言匹2J)ブー公陽・:(R, Pでi)No (R, p)].

Substituting into eq. (7.10), we obtain

β、(Rc、p、t)= (7.11)

 lfβ。(‑R, p)= const, with respect to R, then it follows from むq. (7.11) that β, = β。.

Furthermore, in this case it can be concluded from eq. (6.6) that a,=0. Therefore, the difference between the barometer coefficients \β。(尽。∧,p)and〕βニベ凡, p) can be attributed to the dependence of β。CRc ,p) on the rigidity R.十  二   ∧   j

 Let us assume the primary variation spectrum as

  づ         ○(瓦乙)/ル(召)cx: 良一≒  ………7= r (£)。万レ   十…………    (7.12) Substituting into eq.(7.11), we obtain, by partiaしntegration,

β人Rc、p、約=

嘩膏(βA)R ̄7dR  石膏尺 ̄7dR

?,夕)呪(R, P)Rフ ̄ljR−β。(Re, P)K。(瓦,

:。No(タリ)y∇。即一愉町功2ナ\

β。(私夕)呪(R, P)Rフ ̄ljR−β。(R≪ P)べ(R., 1>)R‑'

From eq. (6.7) and eq. (7.13) we can obtain

    a, (Re,。p, £)=β,(Re,P, tVβ。(.Re, p) \   ノ

      ア工≒β。(私戸)−β。(R., P)]呪(Rc,p)R ̄7 ̄`dR

rJ^

^

KiR, p)R‑'‑'di?不皿(罵・/砂タフ

Barometer Coefficients of High Latitude Neutron Monitors (Kusunose)

100

‑90

g︶ A4ISU84UI   UOJjnSZ

80

〇  〇  〇7  6  5

40

45

2 ▽4  6  8

Vertical Cu↑off

 10∇ 12 Riqidi↑V

 14 16 18 (GV)

Fig.18. Rigidity dependence of cosmic ray neutron monitor〉intensity at sea level in 1965. The     values of filled points are cited from the table given by Carmichael and Bercovitch     (1969e)トCurve shows the approximated value used in the numerical calculation.

 0     5     0 O     0︶q

 1︵`エEE\¢︶↑cの一Qiのoり ﹄の↑QEO

k。

a] .85

8  10  12  14  16  18

   二     十ver↑ical Cutoff Rigidi↑y∧(GV)し ノ

Fig.19トRigidity dependence of neutron monitor barometer coefficient.Filled points show the

 ダvalues given by Carmichael et al. (1968).に如ve shows the approximated value used in

   the numerical calculation.      \       上

46

Fig.20レRiがdity∧dependence of baro㎡eter

The quantity 6j/j。represen臨ヶthe intensi Weレ印ecify its precise depeねdence on the

二臨utron moれitor intensityリV。

1トlhトthe num・erl:dalトcalculation μ淮=レ珀レthe丿卸re√………ニ\二………

prim・町ダしcosmic radiation.

where R。is the lower cuto廿rigidity.

〉Theダcalculations 6f α\√have been上p邸f Thus obtained values areブpJo緋色d in Fig∠21,

assumed. In practice, the computatio前回ha佃………beeね。万一j・・j・=d (7.14)△independently, and the・ resu叫:6fトbφ伍臨

of丿omputation、Cu:toffレrigidity凡七∧are taken

Figure 22 repre卵nts th:e rigid:i片白dependeねφ……=jj。・==。・

expone聯∧7 ダノ凡芦刈GV∧i万s・

"■■■ ■‑・・ ・  ・ ・・・・

I

面………ダ:(7.13):and eq

加計the accuracy

with∧the

period

ニactivity of the

︵FEE\︶

 1・

4 3  2

│(5?

4 3

(54

Barometer Coefficients of

2    5  4 r  石工EE/cP

3  2  −

一︶  才

○ 3

Re IGV

Latitude Neutron Monitors (Kusunose)

47

Fig.21. Results of numerical calculation of叫に(7,14). Wher白白primaryダ皿riation spectrum i5 assumed\as∂J/Jo oc R77 (R

<40GV)and ∂J/J。=O(R>40Gvy Cutoff rigidity Re's sre taken as 1,ト1.5, 2, 3ト5 and 7 GV.        犬上

3  .4  5 6

 二  万      ト    \RcニCu↑off Rigidi↑y (GV)\   ・・ .・. ・ . .・ . .・・.

Fig.22 Distribution c丿α7 are plotted in absolute value. The abscissa is the cutoff rigidity    =  where the neutron monitor is located, or the mean rigidity at several stations√ The      ・curved line・represents the distribution of a r , which isしthe result of numerical      calculation of eq. (7.14)レwhere フョ1.7GV is assumed………j       \      Aトand A2 (Average of eight h汝h latitude statio心).:Kusunose (1984).    ト \十     11 and l2 (lnuvik):Kusunose (1985)・ ・・. . ・ダ‥‥‥‥‥‥‥‥‥‥  ‥ \\    .・ ・..・ :.・.・

    Bi, B2 and B3 (Average of several stations):Baぐhelet et・・ 「・.(1972).犬上  上 \      (ン(Deep River): Carmichael and Peterson (1971)よ       ユ    . \

48 R叩レRep. Kochi Un征………Vol.ゾ嫉(1997)………:トヤ愉比し……ム]…………万………1:しこ万.=ly        " ■ ■■■■  ■

same atmospheric depth. New coefficients ar6:

old ones∧are discussed.     十: ダ

!n Section 6,ぺwe.ケdiscuss∇a possible solar cycle二varia that is〉the second objective of theダpresent㈲ork. The coefficient has been clarified by analyzing the c

the sam口method as app!ied in the previous

/b面o面面r=トむoefficients,

ヤvariationレof barometer

〔==姉畑作耐ノ柏れトt軸I難:海面s二by means c〕f 裕二Tれ(仰向rved datsレ・are shown in Fig.

ノ礼::面緋如尚トcorrelatedに\j加ith the cq自治ic 14. The absolute value of the barometer: coefficie皿∧鋤:=面組拍灯し頑=!rrelatedにレwith・ the cQg・垣・・1c my入姐tensity ; the fractio皿1 variation of the………わ壮φ面面で二面efficient二如/f面面レ]如be in……the rangeニof 0.1%心0.4%, when the、cosmic ray n叩竹卵白………1・n=:t.j・6=れsi:..tム=y万I..=・vari:・atio・h:・.16・==4・slarge as 1 %.

 The year‑to‑year variation rate (jf the baroir period than that in theトsolar active period. Tl attributed to the primary spectΓum variationイ

IれSection 7, aれ〉analysis is perforポed onしt佃土

coefficient and the cosmic十ねy primary部如trum・=・……j………:リ・siねg・.・.万.・・t皿j barometer coefficient and the・ sea level neutron i牡e心社元十七㈲………j.・40 coefficient on the spectrum of primaかcosmic………ヤ・巨y。s is一万:c6:ポ.皿j・・t=・Q。d that the year‑to‑year variation rate of……ths

coefficient on the spectrum of primary cosmiと………jr・4y。§・・is・万:丿皿 that the year‑to‑year variation rate oL:t㈲……hi

(ホanges of bothトthe cutoff r・igidity犬and the pr助命ダ==……師弟毎々町くspectrum.………yj・  1…………

……

…I.・.・.・・.・・      

・.・.・・  .・Acknow[edge巾ents・=………レ……ノ………:.=宍く・:………レj万…

……ト\ゲ……ゾ……jノ1=j・=:.j・j・I/……\……\○………:

L曲aれk Drs. N. Ogita√SレyO shida and helpful suぱestions throuぱhout the present and Y.トInoue………ヶ:l j  :  \‥‥‥ ‥‥‥

Barometer Coefficients of High Latitude :Neutron Monitors (Kusunose) 49

for their valuable suggestions and careful readings ・of the manuscript. l am indebted to the members of the Department of Physics and Department of Information Science, Faculty od Science, Kochi University. Computer works were performed by using FACOM computers at the Computation Center of the Institute of Physical and Chemical Research, and the Data Processing Center of Kochi University.        上 丿   犬   > ・■■■■   ・

References

Agrawal,・S. p., S. K. Ray, and U. R. Rao :・Multiplicity measurりments at Ahmedabad, Proc.

   nth Int. Confにon Cosmic Rays√Budapest 1969,A eta Ph,^isicaAcademiae Scientiarum.

   Hungaricae,29, Suppl. 2, 597 − 600 (1970). ダ      十   \   \  …………

Bachelet, F., P. Balta, E. Dyring, ar!d N. Iucci : On the∧multiplicity effect in standard   cosmic‑ray neutron monitor, Nuoリo Cimento, 31, 1126 ‑ 1130 (1964)に  犬   ト >

Bachelet, F., P. Balata, EレDyring, and N. Iucci : Attenuation coefficients of the cosmic‑ray   nucleonic component in the lower atmosphere√Nuouo Ci?nento,35, 23 − 35 (1965).

Bchelet, F・,N. Iucci, G. Villoresi, and N. Zangrilli:The cosmi己寸ay spectral modulation above   2 GV, IV. The influence on the attenuation coefficient ofレthe nucleo°nic component, Nuouo   Cimento, 11B, 1ブ12 (1972).  二       六十

Belov, A. V.√and L. T. Dorman : Dependence of cosmic ray barometer effect on primary   variation spectrum, Proc. 16th. Int. Cosmic Ray Cと)可・, Kyoto, 4, 310 − 314 (1979).十

Bercovitch, M.:Atmospheric effects on むosmic ray monitoTs, Proc. Int. Conf. on.Cosmic Rays,   Calgar^l,Part A, 269 − 344 (1967),       =      .・.・..  ・I ‥

BlorQster, K. A., and P. J. Tanskanen : The influence of snow and water on the different   multiplicities as observed in neutron monitor NM‑64 1n Oulu, Proc. 11th Int. Conf. on   Cosmic Rays, Budapest 1969, Acta Physica AcaderrtiaeScieriUarum,Hunsaricae, 29,Suppl.

ご 2, 627二630 (1970)レ       ニ   レ ..  ・・・: ..   .・.・・ . .・

:・

Brunberg, E. A., and A. Datner : Eχperimental determination of electron orbits in thを field ofa   magnetic dipole, Part II, TfiU.7i.R,5 (1953) 269 ‑ 292.        ・・.・.・ ・・      ・ .J

CarmichaeljH‑:Cosmic Rays, IQSY Instructionmanual,No. 7レIQSY SecretariatにLondon    (1964); Cosmic Rays (Instruments), J‑.Vnnalsof the IQSY√1, MIT Press, Cambridge, 178一 犬197 (1968).

Carmichael, H., M. Bercovitch, M. A. Shea, M. Magidin, and R. W. Peterson : Attenuation of   neutron monitorしradiation in the atmosphere, Proc. 10th Int. Conf. on Cosmic Rays,   Calgary 1967, Can. J, P九ySし46, S1006 ‑ S1013 (1968).     十

Carmichael, H., and M. Bercovitch : V. Analysis 6f IQSY cosmic‑ray survey measurements,   Can. J. Phys。47, 2073ニ2093 (1969).      犬   > \      I

Carmichael・H・レ尽nd R. W. ダPeterson : Dependence of the n叩tron monitor attenuation   coefficient on atmospheric depth and on geomagnetic cutoff in 1966 and in 1970, Proc.招請 尚  Int. Cosmic TiayC'onf。Hobart, 3, 887 − 892 (1971).  ニレ  :   .  .   ・ . .I    I

Compton, A. H., E. O. WoUan, and R. D. Bennet : 八precision・recording cosmic‑ray meter,   Rev. Sci. Insび., 5, 415 − 422 (1934).    :     十 十      十      し

Dorman, L. I.: CosmiりRay Variations, Transl. Teen. Doc√Liaison Office, Wright‑Patterson   Air Force Base in USA (1958).      ト    ▽   十     ダ

Dyring, E., and B. Sporre:The latitude effect Qf∧the neutrc multiplicity as detected by a   shipborne neutron monitor, 力演. Geoかs., 5, 67 ‑ 77 (1966a)∧       \

Dyring, E., and B. Sporre : Multiplicity measurements on the Uppsala IGY‑neutron monitor,    Ark. Geofys., 5, 79 ‑ 85 (1966b).       犬      ニ

5 0

Form叫,こMjA.=÷N叫tronm呻itorニm4ss∧abSor面φ垣………=.ニ4

  ノt肋面拉rcy巾19ノ(1り54)レよ\Gむ0加片刃卵……,ノ却√雄叫ド‥……肘符………申郎仁\ノ………\………フ=ノニ\……=j……

\士。エ1………j……

F9加ler√しLン:V昨yjIa呟e b0roれtr岨uoride\p叫p付牡卵冊ケφ面柿加ノ,=沢雨>叙八‥仙縦rl/,>34,万I73I=1二ア39

MaねnetischenへVereins▽im JaKre』卵8、

Weidmann、∧Leipzigト1レ57 (1839)………∧

Griffiths, WトK., G. VレHarm an√C……J. Hatt(

 j………coefficients:of=IGYレand NM・64 neutron 血O

……475 − 477 (1965).: \    ‥

Griffiths, W, K.,∧C. J. Hatton, P. Ryder, and C.

・coefficientof the Leeds neutron‑皿onitor during

\,レフ1,1895ニ1898ヶ(1966).  ∧ 十六 ………=・・

:

Griffiths√WレKよG. V. Harman, C. JレHatton, P…………,.=・.L・l j∧variations O一仁selectedニmultiplicities in the L・eeds卜

  , S1044しS1047 C1968). ト  つj  ……∧………:/・=・……

加=aus=ぐ1叩ノ御9しμchtungenレ面s・

レレ玖Gausかレ屈d上WL……Weber),・

■サ11 1……Studies of………the ba・rometric

………:ぐφ好くjノトCosmic 尽(りs、 Loれdoれ、

of the barometer レ=び……Geoph.7s二月叩

ノゾp.Ryder : Theトintensity

∧yariations ofニs(向ctedレmultipIicitiesゾinthりL叫面ノNMぞ財ケ向面サ面∴ブ―Jj加に)j

  ,S1o44こS1o47てI968)j レ  つj ………\………:/I=I………フ∧…………jy………<∧ダ―く…………>ニj…………レレ<レ………呂…………

Harm尽n C・V ,……and C― J………Hatton : Contributi面(佞=/対加\φ面単址∧叫坤\a面1=ノj……t1}x9ニ=t面1petatuヤe   白de畑面卵ce司づ心utronmonitorS,C卯にげレ戸砂牡う……邨=ンノ:斟姉恥≒レ班o5ニ6………貝祁8)レL…………万………j………=万……

…エ…………:

H4tton,\CレJ・仙nd卜江(7armich=叫:\ExpetimenぱI………:珀面叫縦牡i叶……=y涯………=1thje

エj万JNMj湊==叫utroびノmonitor,

Inoue, A., M. Wada, andレL Kondo : As    DataCenter C2しfor Cosmic Rays,

……(1983).      ∧    レレヶ‥

‥‥プj…………ト………:=……I Ishii, C.トNish・in巨!chigata Uchusenkei noトSho袖如6ヤレ(如二

  (1944).:………J = ‥‥‥     ‥ ‥‥‥‥‥‥‥万レケ==j………j11JI:::II:ll Jory,・・ F. ・S,・・:・Selected cosmic‑ray orbitsレin・.・the・函    1075 (1956). っ   十 \ ▽   十  …………

Kaminer,∧N. S., S. F. Ilgch, TニS√Khadakhai

1, World

√Tokyo

☆Rifeen……疏0,千23, 535 545'

field,:=Physブケμ印之∧!03,1068

the cosmicいra・y

∧れeutron cQmpohent,朽刃c.面£2=C0ゼ.(コ向叫泌……=.お妙心ゾ石面面戻浅に486ケ1乙=レ4I86I.j(。μ

K尽mphou卵,よL,:C6rreIation ofn回伴on m9μlニニtJφtエjエ1Ijや:エo万4sjj牡戸回エ万宍=jぐエφりff'iニぐ゜iQi

尚NφΓikuraにSCLしPaper last. Phンs. Chem

Kawasaki, S.:Free air pressure reduced from

barometer effect, Proc.16tfi:Iれ:tレCosmic:Ray 4√263 ‑ 265 (1979)・.   ・・・    ………レ

j ノ … … … : . . ・ ・ . = … … … I . 一 一 l . 1 . ・ . ・ . L ・ . ・ ・   ト ‥ ‥ ‥   ‥ ‥ ‥ ‥

ケ 皿 ( 叫 瞎 畔 i 9 = 皿 万 o f C O S 毎 畑 r a y

Barometer Coefficients of High Latitude Neutron Monitors (Kusunose) 51

Kawasaki, S., K. Imai, and M. Wada : The cosmic ray intensities observed by Mt. Norikura  ∧neutron monitor, 1968 − 1980, ICR‑Report‑109‑83‑03,Inst. Cosmic Ray. Res., Univ. Tokyo   (1983).      ニ      ト 犬  △ ニ      <   ト

Kawasaki, S・, and M. Wada : Estimation of f恥e airパpressure from radio如nde data for the   correction of cosmic ray barometer effect,:Proc.18tK Int.Cosmic Ray Corが.,Bangalore, S   , 473 ‑ 475 (1983).      ...・.・・ ・.・・. ・. ・・..・・. ・・.・   ・・・

Kent, D. B., H. Coxell, and M. A. Pomerantz :L尽titude十survey of the frequency of multiple   events in an airborne neutron monitor,・Can.ニJ..Ph‑ys.,・46。S1082 ‑ S1086 (1968).・\・=.・\

Kodama, M・, and A. Inoue : Differential rigidity response of different multiplicities in the   NM‑64 neutron monitor, Proc. 11th Int. Conf. Cosmic Rays, Budapest 1969,A eta Phンsica   AcaderriiaeScientiari£m:Harigaricae,29, Suppl. 2j,577 − 58ト(1970).      \  \

Kodama, M., and Aバnoue : Availability and 玉mitation of multiplicity measurements in the   NM‑64 neutron monitor aレSyowa Station, AntarcticaレJapanese AれtarcticI Research

〉 ExpeditionSci.Rep.Ser. A, No. 9, Polar Research Center, National Science Museum  (1970)/一      /   ●●●● ●●● ●●●    ●●●  ●・      ・●

Kusunose, M;, and M, Wada : Characteristics of Nish如a‑type ion chamber (in Japaneseレwith  Su血mary in English), Riken Hokoku, 45, 93コ√104 (1969).十 ・...・..・    ・・     .・・・・

Kusunose, M., and M; Kodama : The effect of h毎h コwind on the correction of cosmic‑ray  ニ1叫ensity for barometric pressure at Syowa Stationレ Antarctica (in \J八panese, with  十 Summary in English),トRifeenHofeohu, A8,121 ‑し127 (1972). レ

Kusunose, M.にN. Ogita, and S. Yoshida : Examination of the barometric coefficients of   neutron monitor data, Proc.17th, Iat. Cosmic\RayConf.,Paris,10, 281 − 284ダ(1981), Kusunose, M.:A solar cycle variation in the barometer coefficients of high latitude neutron   monitors,J. Phvs. Soc. Japan,53, 4488づ1498 (1984).  1 /.・  ・■■  ■■■  ■■・■■ ■・■・

Kusunose, M.: Year‑to‑year尚variation in the十barometer coefficient of cosmic ray十neutron 十 monitor located at high latitude,Mem. Fac. Sci.Kocki Unii).レ5,Ser. B,!5 − 20 (1985).

Kusunose, M., and N. Ogita : On the solar cycle variation in the barometer coefficients of h址h  latitudむneutron monitors, Proc. I9tfi Int. CosmicRり C6可.√ムαゐμa, 5, 305 ‑ 308 (1985).

Lapointe, S. M・, and D, C. Rose土

  cosmic‑ray intensities, Can. J. Ph.ンs。,40,687 ‑ 697 (1962). ・.・・・..・  .. ..・  .. ・・

Lockwood, J. A., and P. Singh ; Cosmic‑ray modulation during Forbush decrease in 1968 T   !969, Proc. 11th Int. Conf. on Cosmic Rays, Budapest 1969, Acta Phy

  ScientiarunれHuTvgaricae,29, Suppト2, 319 − 325 (1970)ト        犬  十‥‥‥‥  ‥‥

Lust, R., and J. A. Simpson : Document 5356, A. D. I. Auχiliary Publications ProjectけLibrary   of Congress, Washington, D. C. (1957).    ・・.・.・      .・..  ・.・・

Malmfors, K. G.:Determination of orbits in the field of a magnetic dipole with applications   to the theory of the diurnal variation of cosmic radiation, ArfeioMat.,Astr. F51S。32A,1   ‑ 64 (1945).    j      ・.   ▽  ∧      ニ       \

Martinelle, S.:Air pressure dependence of cosmic ray intensity − Methods and results of a   statistical analysis on neutron monitor data, Tellus, 20, 1 − 197 (1968)レ

McCracken, K. G., and D. H. Johns : The attenuation length of the h塘h energy nucleonic   component of cosmic radiation near sea level, A'".乙z叩oCimento。13, 96 − 107 (i9り9).

McCraken, K. G., U. R. Rao, B. C. Fowler, M.〉A. Sheaレand D。F, Smart : Cosmic 皿y tables   一八symptotic directions, variational coefficients and cutoff rigidities,犬IQSY Instruction   Manual, No. 10, IQSY Committee, London (1965).      ……

Myssowsky, L., and L. Tuwim : Ungeselmassige Intensitatsschwankungen der Hohen‑ strahlung   in geringer Seehohe. Pだys. Z., 39, 146 ‑ 150 (1926).       一        六十

ドキュメント内 Barometer Coefficients of High Latitude Neutron Monitors (ページ 34-44)

関連したドキュメント