0
F10+ -12 -103 0 103 12
1 10 1 10
Figure 3.56: Γ0(10)+
For the cusp ∞ We have Γ∞={±(10 1n) ; n∈Z}, and we have the Eisenstein series associated with Γ0(10)+:
Ek,10+(z) :=10k/2Ek(10z) + 5k/2Ek(5z) + 2k/2Ek(2z) +Ek(z)
(5k/2+ 1)(2k/2+ 1) fork>4. (3.209)
The space of modular forms Letk be an even integer k>4. We haveMk(Γ0(10)+) =CEk,10+⊕ Sk(Γ0(10)+) andSk(Γ0(10)+) = (C(E2/3,100)8∆10⊕C(E2/3,100)4(∆10)2⊕C(∆10)3)Mk−8(Γ0(10)+). Then, we have
Mk(Γ0(10)+) =Ek,10+0(C((E2/3,100)4)n⊕C((E2/3,100)4)n−1∆10⊕ · · · ⊕C(∆10)n),
wheren= dim(Mk(Γ0(10)+))−1 =b3k/8−2(k/4− bk/4c)c, and whereEk,10+0:= 1, (E2/3,100)3E8/3,100, (E2/3,100)2, andE2/3,100E8/3,100, whenk≡0, 2, 4, and 6 (mod 8), respectively.
Hauptmodul We define thehauptmodul of Γ0(10)+:
J10+:= (E2/3,100)4/∆10=1
q+ 4 + 22q+ 56q2+ 177q3+· · ·, (3.210) wherev∞(J10+) =−1 andvρ10,1(J10+) = 4. Then, we have
J10+:∂F10+\ {z∈H; Re(z) =±1/2} →[−4,16]⊂R. (3.211)
Location of the zeros of the Eisenstein series Fork6800, we can prove that all of the zeros of Ek,10+ lie on the lower arcs of∂F10+ by numerical calculation.
-1
2
-3
10 0 103 12
1 10 1 10
Figure 3.57: Location of the zeros of the Eisenstein series
Location of the zeros of Hecke type Faber Polynomial Form 6200, we can prove that all of the zeros ofFm,10+ lie on the lower arcs of∂F10+ by numerical calculation.
3.10.2 Γ
0(10) + 10 = Γ
∗0(10)
Fundamental domain We have a fundamental domain for Γ∗0(10) as follows:
F10+10={|z+ 9/20|>1/20, −1/26Re(z)<−3/7}
n
|z+ 1/3|>1/(3√
10),−3/76Re(z)<−3/10 o [ n|z|>1/√
10, −3/106Re(z)60o [ n
|z|>1/√
10,0< Re(z)63/10o [ n|z−1/3|>1/(3√
10),3/10< Re(z)63/7o [
{|z−9/20|>1/20,3/7< Re(z)<1/2},
(3.212)
where W10 : eiθ/√
10 → ei(π−θ)/√
10, ¡−3−1
10 3
¢W10 : eiθ/(3√
10) + 1/3 → ei(π−θ)/(3√
10)−1/3, and
¡−9 4
20 −9
¢: (eiθ+ 5)/12→(ei(π−θ)−5)/12. Then, we have Γ∗0(10) =h(1 10 1), W10, ¡−3−1
10 3
¢, (20 99 4)i. (3.213)
-1 2
-3
7
-3
10 0 3
10 3 7 1 2 1
10
Figure 3.58: Γ∗0(10)
Valence formula The cusps of Γ∗0(10) are ∞and−1/2, and the elliptic points arei/√
10 andρ10,5=
−3/7 +i/(5√
10). Letf be a modular function of weightkfor Γ∗0(10), which is not identically zero. We have
v∞(f) +v−1/2(f) +1
2vi/√10(f) +1
2vρ10,1(f) +1
2vρ10,3(f) + X
p∈Γ∗0(10)\H p6=i/√
10,ρ10,1,ρ10,3
vp(f) = 3k
4 . (3.214)
Furthermore, the stabilizer of the elliptic point i/√
10 (resp. ρ10,1, ρ10,3) is {±I,±W10} (resp.
©±I,±¡−3−1
10 3
¢ª,©
±I,±¡−13 3
30 −7
¢W10
ª).
For the cusp∞ We have Γ∞={±(10 1n) ; n∈Z}, and we have the Eisenstein series for the cusp∞ associated with Γ∗0(10):
Ek,10+10∞ (z) := (10k/2+ 1)(10k/2Ek(10z) +Ek(z))−(5k/2+ 2k/2)(5k/2Ek(5z) + 2k/2Ek(2z))
(5k−1)(2k−1) fork>4.
(3.215)
For the cusp −1/2 We have Γ−1/2 =©
±¡10n+1 5n
−20n −10n+1
¢; n∈Zª
and γ−1/2 =W10,5, and we have the Eisenstein series for the cusp−1/2 associated with Γ∗0(10):
Ek,10+10−1/2 (z) := −(5k/2+ 2k/2)(10k/2Ek(10z) +Ek(z)) + (10k/2+ 1)(5k/2Ek(5z) + 2k/2Ek(2z))
(5k−1)(2k−1) fork>4.
(3.216) We also haveγ−1/2−1 Γ∗0(10)γ−1/2= Γ∗0(10).
0
The space of modular forms We define
∆∞10+10:= ∆∞10∆010, ∆−1/210+10:= ∆−1/210 ∆−1/510 , which are 2nd semimodular forms for Γ∗0(10) of weight 2. Furthermore, we define
∆8,1,10+10:= ∆∞10+10(∆−1/210+10)5, ∆8,2,10+10:= (∆∞10+10)5∆−1/210+10,
∆8,3,10+10:= (∆∞10+10)2(∆−1/210+10)4, ∆8,4,10+10:= (∆∞10+10)4(∆−1/210+10)2. Now, we have
Mk(Γ∗0(10)) =CE∞k,10+10⊕CE−1/2k,10+10⊕Sk(Γ∗0(10)),
Sk(Γ∗0(10)) = (C∆8,1,10+10⊕C∆8,2,10+10⊕C∆8,3,10+10⊕C∆8,4,10+10⊕C(∆10)3)Mk−8(Γ∗0(10)) for every even integerk>4. Then, we haveM4n+2(Γ∗0(10)) =E2,10+100M4n(Γ∗0(10)) and
M8n(Γ∗0(10)) =C(E∞8,10+10)n⊕C(E8,10+10∞ )n−1∆8,1,10+10⊕C(E8,10+10∞ )n−1∆8,3,10+10
⊕C(E8,10+10∞ )n−1(∆10)3⊕ · · · ⊕C∆8,3,10+10(∆10)3(n−1)
⊕C(E8,10+10−1/2 )n⊕C(E8,10+10−1/2 )n−1∆8,2,10+10⊕C(E−1/28,10+10)n−1∆8,4,10+10
⊕C(E8,10+10−1/2 )n−1(∆10)3⊕ · · · ⊕C∆8,4,10+10(∆10)3(n−1)⊕C(∆10)3n, M8n+4(Γ∗0(10)) =E4,10+10∞ (C(E8,10+10∞ )n⊕C(E8,10+10∞ )n−1∆8,1,10+10⊕C(E8,10+10∞ )n−1∆8,3,10+10
⊕C(E8,10+10∞ )n−1(∆10)3⊕ · · · ⊕C∆8,3,10+10(∆10)3(n−1)⊕C(∆10)3n)
⊕E4,10+10−1/2 (C(E8,10+10−1/2 )n⊕C(E8,10+10−1/2 )n−1∆8,2,10+10⊕C(E8,10+10−1/2 )n−1∆8,4,10+10
⊕C(E8,10+10−1/2 )n−1(∆10)3⊕ · · · ⊕C∆8,4,10+10(∆10)3(n−1)⊕C(∆10)3n)
⊕(C∆∞10+10(∆−1/210+10)2⊕C(∆∞10+10)2∆−1/210+10)(∆10)3n. Furthremore, we can write
M4n(Γ∗0(10)) =C(∆∞10+10)3n⊕C(∆∞10+10)3n−1∆−1/210+10⊕ · · · ⊕C(∆−1/210+10)3n.
Hauptmodul We define thehauptmodul of Γ∗0(10):
J10+10:= ∆−1/210+10/∆∞10+10(=η−6(z)η6(2z)η−6(5z)η6(10z)) = 1
q+ 6 + 21q+ 62q2+ 162q3+· · ·, (3.217) wherev∞(J10+10) =−1 andv−1/2(J10+10) = 1. Then, we have
J10+10:∂F10+10\ {z∈H; Re(z) =±1/2} →[0,9 + 4√
5]⊂R. (3.218)
Location of the zeros of the Eisenstein series SinceW10,5−1Γ∗0(10)W10,5= Γ∗0(10), we have Ek,10+10−1/2 (W10,5z) = (2√
5z+√
5)kEk,10+10∞ (z). (3.219)
Furthermore, we have
Ek,10+10−1/2 (eiθ0/(3√
10)−1/3) = (−√
5eiθ−√
2)kEk,10+10∞ (eiθ/√ 10), Ek,10+10−1/2 (eiθ0/√
10) = (√
2(eiθ+ 1)/3)kEk,10+10∞ (eiθ/(3√
10)−1/3), Ek,10+10−1/2 (itan(θ/2)/2) = ((eiθ+ 1)/(2√
5))kEk,10+10∞ ((eiθ−9)/20), whereeiθ0 = (−2√
10−7 cosθ+ 3isinθ)/(7 + 2√
10 cosθ).
Fork6500, we can prove that all of the zeros ofE∞k,10+10lie on the lower arcs of∂F10+10by numerical calculation.
Ek,10+10∞ -12-37 -103 0 103 37 12
1 10
Ek,10+10−1/2 -12-37 -103 0 103 37 12
1 10
Figure 3.59: Location of the zeros of the Eisenstein series
Location of the zeros of Hecke type Faber Polynomial For every odd integer m 6 200 but m= 7,9,11, we can prove that all of the zeros of Fm,10+10 lie on the lower arcs of∂F10+10by numerical calculation. On the other hand, by numerical calculation, form= 7,9,11, we can prove that all but two of the zeros ofFm,10+10 lie on the lower arcs of∂F10+10, and two of the zeros ofFm,10+10 do not lie on
∂F10+10. For the other cases wheremis even andm6200, by numerical calculation, we can prove that all but one of the zeros ofFm,10+10lie on the lower arcs of∂F10+10, and one of the zeros ofFm,10+10 lies on∂F10+10but does not on the lower arcs.
3.10.3 Γ
0(10) + 5
Fundamental domain We have a fundamental domain for Γ0(10) + 5 as follows:
F10+5= n
|z+ 1/2|>1/(2√
5),−1/26Re(z)<−3/10o [ n
|z+ 1/4|>1/(4√
5), −3/106Re(z)<−1/6 o [{|z+ 1/10|>1/10,−1/66Re(z)60}[
{|z−1/10|>1/10,0< Re(z)61/6}
[ n|z−1/4|>1/(4√
5), 1/6< Re(z)63/10o [ n
|z−1/2|>1/(2√
5),3/10< Re(z)<1/2 o
, (3.220) where¡−1 0
10−1
¢: (eiθ+ 1)/10→(ei(π−θ)−1)/10,¡−7−4
30 17
¢W10,5:eiθ/(4√
5) + 1/4→ei(π−θ)/(4√
5)−1/4, and¡−9−5
20 11
¢W10,5:eiθ/(2√
5) + 1/2→ei(π−θ)/(2√
5)−1/2. Then, we have Γ0(10) + 5 =h(1 10 1), W10,5, (10 11 0), ¡−3−1
10 3
¢i. (3.221)
-1
2
-3
10
-1
6 0 1
6 3 10
1 2
Figure 3.60: Γ0(10) + 5
Valence formula The cusps of Γ0(10)+5 are∞and 0, and the elliptic points areρ10,1=−3/10+i/10, ρ10,2 = −1/2 +i/(2√
5), and ρ10,4 = −1/6 +i/(6√
5). Let f be a modular function of weight k for Γ0(10) + 5, which is not identically zero. We have
v∞(f) +v0(f) +1
2vρ10,1(f) +1
2vρ10,2(f) +1
2vρ10,4(f) + X
p∈Γ0(10)+5\H p6=ρ10,1,ρ10,2,ρ10,4
vp(f) = 3k
4 . (3.222) Furthermore, the stabilizer of the elliptic point ρ10,1 (resp. ρ10,2, ρ10,4) is ©
±I,±¡−3−1
10 3
¢ª (resp.
{±I,±W10,5},©
±I,±¡−3−2
20 13
¢W10,5
ª).
0
For the cusp∞ We have Γ∞={±(10 1n) ; n∈Z}, and we have the Eisenstein series for the cusp∞ associated with Γ0(10) + 5:
E∞k,10+5(z) := 2k5k/2Ek(10z)−5k/2Ek(5z) + 2kEk(2z)−Ek(z)
(5k/2+ 1)(2k−1) fork>4. (3.223)
For the cusp 0 We have Γ0 ={±(10n1 01) ;n∈Z} and γ0 =W10, and we have the Eisenstein series for the cusp 0 associated with Γ0(10) + 5:
E0k,10+5(z) := −2k/2(5k/2Ek(10z)−5k/2Ek(5z) +Ek(2z)−Ek(z))
(5k/2+ 1)(2k−1) fork>4. (3.224) We also haveγ0−1 (Γ0(10) + 5)γ0= Γ0(10) + 5.
The space of modular forms We define
∆∞10+5:= ∆∞10∆−1/210 , ∆010+5:= ∆010∆−1/510 ,
which are 2nd semimodular forms for Γ0(10) + 5 of weight 2. Furthermore, we define
∆8,1,10+5:= ∆∞10+5(∆010+5)5, ∆8,2,10+5:= (∆∞10+5)5∆010+5,
∆8,3,10+5:= (∆∞10+5)2(∆010+5)4, ∆8,4,10+5:= (∆∞10+5)4(∆010+5)2. Now, we have
Mk(Γ0(10) + 5) =CE∞k,10+5⊕CE0k,10+5⊕Sk(Γ0(10) + 5),
Sk(Γ0(10) + 5) = (C∆8,1,10+5⊕C∆8,2,10+5⊕C∆8,3,10+5⊕C∆8,4,10+5⊕C(∆10)3)Mk−8(Γ0(10) + 5) for every even integerk>4. Then, we haveM4n+2(Γ0(10) + 5) =E2,10+50M4n(Γ0(10) + 5) and
M8n(Γ0(10) + 5) =C(E8,10+5∞ )n⊕C(E8,10+5∞ )n−1∆8,1,10+5⊕C(E8,10+5∞ )n−1∆8,3,10+5
⊕C(E8,10+5∞ )n−1(∆10)3⊕ · · · ⊕C∆8,3,10+5(∆10)3(n−1)
⊕C(E08,10+5)n⊕C(E8,10+50 )n−1∆8,2,10+5⊕C(E8,10+50 )n−1∆8,4,10+5
⊕C(E8,10+50 )n−1(∆10)3⊕ · · · ⊕C∆8,4,10+5(∆10)3(n−1)⊕C(∆10)3n, M8n+4(Γ0(10) + 5) =E4,10+5∞ (C(E8,10+5∞ )n⊕C(E∞8,10+5)n−1∆8,1,10+5⊕C(E8,10+5∞ )n−1∆8,3,10+5
⊕C(E8,10+5∞ )n−1(∆10)3⊕ · · · ⊕C∆8,3,10+5(∆10)3(n−1)⊕C(∆10)3n)
⊕E4,10+50 (C(E8,10+50 )n⊕C(E8,10+50 )n−1∆8,2,10+5⊕C(E08,10+5)n−1∆8,4,10+5
⊕C(E8,10+50 )n−1(∆10)3⊕ · · · ⊕C∆8,4,10+5(∆10)3(n−1)⊕C(∆10)3n)
⊕(C∆∞10+5(∆010+5)2⊕C(∆∞10+5)2∆010+5)(∆10)3n. Furthremore, we can write
M4n(Γ0(10) + 5) =C(∆∞10+5)3n⊕C(∆∞10+5)3n−1∆010+5⊕ · · · ⊕C(∆010+5)3n.
Hauptmodul We define thehauptmodul of Γ0(10) + 5:
J10+5:= ∆010+5/∆∞10+5(=η4(z)η−4(2z)η4(5z)η−4(10z)) = 1
q −4 + 6q−8q2+ 17q3− · · ·, (3.225) wherev∞(J10+5) =−1 andv0(J10+5) = 1. Then, we have
J10+5:∂F10+5\ {z∈H; Re(z) =±1/2} →[−6−2√
5,0]⊂R. (3.226)
Location of the zeros of the Eisenstein series SinceW10−1(Γ0(10) + 5)W10= Γ0(10) + 5, we have E0k,10+5(W10z) = (√
10z)kEk,10+5∞ (z). (3.227)
Furthermore, we have
Ek,10+50 (−1/2 +i/(2 tan(θ/2))) = ((eiθ−1)/√
10)kE∞k,10+5((eiθ−1)/10), Ek,10+50 (eiθ0/(2√
5)−1/2) = (−(√
5eiθ−1)/(2√
2))kEk,10+5∞ (eiθ/(4√
5)−1/4), Ek,10+50 (eiθ0/(4√
5)−1/4) = (−(√
5eiθ−1)/√
2)kEk,10+5∞ (eiθ/(2√
5)−1/2), whereeiθ0 = (2√
5−6 cosθ+ 4isinθ)/(6−2√
5 cosθ).
Fork6450, we can prove that all of the zeros ofEk,10+5∞ lie on the lower arcs of∂F10+5 by numerical calculation.
Ek,10+5∞ -12 -103 -16 0 16 103 12 Ek,10+50 -12 -103 -16 0 16 103 12 Figure 3.61: Location of the zeros of the Eisenstein series
Location of the zeros of Hecke type Faber Polynomial Form 6200, we can prove that all of the zeros ofFm,10+5 lie on the lower arcs of∂F10+5 by numerical calculation.
3.10.4 Γ
0(10) + 2
Fundamental domain We have a fundamental domain for Γ0(10) + 2 as follows:
F10+2= n
|z+ 2/5|>1/(5√
2),−1/26Re(z)6−3/10o [ n
|z+ 1/5|>1/(5√
2),−3/10< Re(z)<−1/10 o [{|z+ 1/10|>1/10,06Re(z)60}[
{|z−1/10|>1/10,0< Re(z)<1/10}
[ n|z−1/5|>1/(5√
2),1/106Re(z)63/10o [ n
|z−2/5|>1/(5√
2),3/10< Re(z)<1/2 o
, (3.228) where¡−1 0
10−1
¢: (eiθ+ 1)/10→(ei(π−θ)−1)/10,¡−3−1
10 3
¢W10,5:eiθ/(5√
2)−1/5→ei(π−θ)/(5√
2)−2/5, and (40 99 2)W10,5:eiθ/(5√
2) + 2/5→ei(π−θ)/(5√
2) + 1/5. Then, we have
Γ0(10) + 2 =h(1 10 1), W10,2, (10 11 0), (40 99 2)i. (3.229)
-1
2
-3
10
-1
10 0 1
10 3 10
1 2
Figure 3.62: Γ0(10) + 2
0
Valence formula The cusps of Γ0(10) + 2 are∞and 0, and the elliptic points areρ10,1=−3/10 +i/10 andρ10,5= 3/10 +i/10. Let f be a modular function of weightkfor Γ0(10) + 2, which is not identically zero. We have
v∞(f) +v0(f) +1
4vρ10,1(f) +1
4vρ10,5(f) + X
p∈Γ0(10)+2\H p6=ρ10,1,ρ10,5
vp(f) =3k
4 . (3.230)
Furthermore, the stabilizer of the elliptic pointρ10,1(resp.ρ10,5) is©
±I,±¡−3−1
10 3
¢,±W10,2,±¡−3−1
10 3
¢W10,2
ª (resp. ©
±I,±¡3 −1
10−3
¢,±(13 330 7)W10,2,±(40 99 2)W10,2
ª).
For the cusp∞ We have Γ∞={±(10 1n) ; n∈Z}, and we have the Eisenstein series for the cusp∞ associated with Γ0(10) + 2:
E∞k,10+2(z) := 2k/25kEk(10z) + 5kEk(5z)−2k/2Ek(2z)−Ek(z)
(5k−1)(2k/2+ 1) fork>4. (3.231)
For the cusp 0 We have Γ0 ={±(10n1 01) ;n∈Z} and γ0 =W10, and we have the Eisenstein series for the cusp 0 associated with Γ0(10) + 2:
E0k,10+2(z) := −5k/2(2k/2Ek(10z) +Ek(5z)−2k/2Ek(2z)−Ek(z))
(5k−1)(2k/2+ 1) fork>4. (3.232) We also haveγ0−1 (Γ0(10) + 2)γ0= Γ0(10) + 2.
The space of modular forms We define
∆∞10+2:= ∆∞10∆−1/510 , ∆010+2:= ∆010∆−1/210 ,
which are 2nd semimodular forms for Γ0(10) + 2 of weight 2. Furthermore, we define
∆8,1,10+2:= ∆∞10+2(∆010+2)5, ∆8,2,10+2:= (∆∞10+2)5∆010+2,
∆8,3,10+2:= (∆∞10+2)2(∆010+2)4, ∆8,4,10+2:= (∆∞10+2)4(∆010+2)2. Now, we have
Mk(Γ0(10) + 2) =CE∞k,10+2⊕CE0k,10+2⊕Sk(Γ0(10) + 2),
Sk(Γ0(10) + 2) = (C∆8,1,10+2⊕C∆8,2,10+2⊕C∆8,3,10+2⊕C∆8,4,10+2⊕C(∆10)3)Mk−8(Γ0(10) + 2) for every even integerk>4. Then, we haveM8n+2(Γ0(10) + 2) =E2,10+20M8n(Γ0(10) + 2) and
M8n(Γ0(10) + 2) =C(E∞8,10+2)n⊕C(E8,10+2∞ )n−1∆8,1,10+2⊕C(E8,10+2∞ )n−1∆8,3,10+2
⊕C(E8,10+2∞ )n−1(∆10)3⊕ · · · ⊕C∆8,3,10+2(∆10)3(n−1)
⊕C(E8,10+20 )n⊕C(E8,10+20 )n−1∆8,2,10+2⊕C(E8,10+20 )n−1∆8,4,10+2
⊕C(E8,10+20 )n−1(∆10)3⊕ · · · ⊕C∆8,4,10+2(∆10)3(n−1)⊕C(∆10)3n,
M8n+4(Γ0(10) + 2) =E4,10+2∞ (C(E8,10+2∞ )n⊕C(E∞8,10+2)n−1∆8,1,10+2⊕C(E8,10+2∞ )n−1∆8,3,10+2
⊕C(E8,10+2∞ )n−1(∆10)3⊕ · · · ⊕C∆8,3,10+2(∆10)3(n−1)⊕C(∆10)3n)
⊕E4,10+20 (C(E8,10+20 )n⊕C(E8,10+20 )n−1∆8,2,10+2⊕C(E08,10+2)n−1∆8,4,10+2
⊕C(E8,10+20 )n−1(∆10)3⊕ · · · ⊕C∆8,4,10+2(∆10)3(n−1)⊕C(∆10)3n)
⊕(E2/3,100)2(C(∆∞10+2)2⊕C(∆010+2)2⊕C∆10)(∆10)3n,
M8n+6(Γ0(10) + 2) =E6,10+2∞ (C(E8,10+2∞ )n⊕C(E∞8,10+2)n−1∆8,1,10+2⊕C(E8,10+2∞ )n−1∆8,3,10+2
⊕C(E8,10+2∞ )n−1(∆10)3⊕ · · · ⊕C∆8,3,10+2(∆10)3(n−1)⊕C(∆10)3n)
⊕E6,10+20 (C(E8,10+20 )n⊕C(E8,10+20 )n−1∆8,2,10+2⊕C(E08,10+2)n−1∆8,4,10+2
⊕C(E8,10+20 )n−1(∆10)3⊕ · · · ⊕C∆8,4,10+2(∆10)3(n−1)⊕C(∆10)3n)
⊕E2/3,100(C(∆∞10+2)4⊕C(∆010+2)4⊕C(∆∞10+2)3∆010+2
⊕C∆∞10+2(∆010+2)3⊕C(∆10)2)(∆10)3n. Here, we defineE2/3,10+20:= 3
q
E2,10+20 wherevρ10,1(E2/3,10+20) =vρ10,5(E2/3,10+20) = 1, and we can write
Mk(Γ0(10) + 2) =Ek,10+20(C(∆∞10+2)n⊕C(∆∞10+2)n−1∆010+2⊕ · · · ⊕C(∆010+2)n),
wheren= dim(Mk(Γ0(10) + 2))−1 =b3k/4−2(3k/8− b3k/8c)c, and whereEk,10+20:= 1, (E2/3,10+20)3, (E2/3,10+20)2, andE2/3,10+20, whenk≡0, 2, 4, and 6 (mod 8), respectively.
Hauptmodul We define thehauptmodul of Γ0(10) + 2:
J10+2:= ∆010+2/∆∞10+2(=η2(z)η2(2z)η−2(5z)η−2(10z)) = 1
q−2−3q+ 6q2+ 2q3− · · · , (3.233) wherev∞(J10+2) =−1 andv0(J10+2) = 1. Then, we have
J10+2: {|z+ 1/10|= 1/10,−1/106Re(z)60} →[−1,0]⊂R, n
|z+ 2/5|= 1/(5√
2),−1/26Re(z)6−3/10 o
→ {−36Re(z)6−1,06Im(z)64}, n
|z−1/5|= 1/(5√
2), 1/106Re(z)63/10 o
→ {−36Re(z)6−1,−46Im(z)60}.
(3.234)
Thus,J10+2 does not take real value on some arcs of∂F10+2.
Lower arcs of∂F10+2
-3 -2 -1
-4 -2 2 4
Figure 3.63: Image byJ10+2
Location of the zeros of Eisenstein series SinceW10−1(Γ0(10) + 2)W10= Γ0(10) + 2, we have E0k,10+2(W10z) = (√
10z)kEk,10+2∞ (z). (3.235)
0
Furthermore, we have
Ek,10+20 (−1/2 +i/(2 tanθ/2)) = ((eiθ−1)/√
10)kE∞k,10+2((eiθ−1)/10), Ek,10+20 (eiθ0/√
2 + 1) = (−(√
2eiθ+ 1)/√
5)kEk,10+2∞ (eiθ/(5√
2)−2/5), Ek,10+20 (eiθ00/√
2−1) = ((eiθ+√ 2)/√
5)kE∞k,10+2(eiθ/(5√
2) + 1/5), whereeiθ0= (−2√
2−3 cosθ+isinθ)/(3 + 2√
2 cosθ) andeiθ00= (−2√
2 + 3 cosθ+isinθ)/(3−2√ 2 cosθ).
Ek,10+2∞ -12 -103 -101 0 101 103 12 Ek,10+20 -12 -103 -101 0 101 103 12
Figure 3.64: Neighborhood of location of the zeros of the Eisenstein series
Now, we can observe that the zeros of Ek,10+2∞ do not lie on the arcs of ∂F10+2 for small weight k by numerical calculation. However, when the weightk increases, then the location of the zeros seems to approach to lower arcs of∂F10+2. (See Figure 3.65)
Location of the zeros of Hecke type Faber Polynomial We can observe that some zeros ofFm,10+2
do not lie on the lower arcs of∂F10+2 for small weight mby numerical calculation. However, when the weightmincreases, then the location of the zeros seems to approach to lower arcs of∂F10+2. (see Figure 3.66)
3.10.5 Γ
0(10)
Fundamental domain We have a fundamental domain for Γ0(10) as follows:
F10={|z+ 9/20|>1/20, −1/26Re(z)<−2/5}[
{|z+ 3/10|>1/10,−2/56Re(z)6−3/10}
[{|z+ 3/10|>1/10,−3/10< Re(z)<−1/5}[
{|z+ 1/10|>1/10,−1/56Re(z)60}
[{|z−1/10|>1/10,0< Re(z)<1/5}[
{|z−3/10|61/10,1/56Re(z)63/10}
[{|z−3/10|>1/10,3/10< Re(z)62/5}[
{|z−9/20|>1/20, 2/5< Re(z)<1/2},
(3.236)
where ¡−1 0
10 −1
¢: (eiθ+ 1)/10 →(ei(π−θ)−1)/10, ¡−3−1
10 3
¢: (eiθ−3)/10→ (ei(π−θ)−3)/10, ¡3 −1
10−3
¢: (eiθ+ 3)/10→(ei(π−θ)+ 3)/10, and¡−9 4
20 −9
¢: (eiθ+ 9)/20→(ei(π−θ)−9)/20. Then, we have Γ0(10) =h(1 10 1), (10 11 0), ¡−3−1
10 3
¢, ¡3 −1
10−3
¢, (20 99 4)i. (3.237)
Valence formula The cusps of Γ0(10) are ∞, 0, −1/2, and −1/5. Let f be a modular function of weightk for Γ0(10), which is not identically zero. We have
v∞(f) +v0(f) +v−1/2(f) +v−1/5(f) +1
2vρ10,1(f) +1
2vρ10,5(f) + X
p∈Γ0(10)\H p6=ρ10,1,ρ10,5
vp(f) =3k
2 . (3.238)
Furthermore, the stabilizer of the elliptic pointρ10,1(resp.ρ10,5) is©
±I,±¡−3−1
10 3
¢ª(resp. ©
±I,±¡3 −1
10−3
¢ª).
-3 -2 -1
-4 -2 2 4
The zeros ofEk,10+2∞ for 46k640
-3 -2 -1
-4 -2 2 4
The zeros of E1000,10+2∞
Figure 3.65: Image byJ10+2
0
-3 -2 -1
-4 -2 2 4
The zeros ofFm,10+2 form640
-3 -2 -1
-4 -2 2 4
The zeros ofF200,10+2
Figure 3.66: Image byJ10+2
-12 -25 -15 0 1 5
2 5
1 2
Figure 3.67: Γ0(10)
For the cusp∞ We have Γ∞={±(10 1n) ; n∈Z}, and we have the Eisenstein series for the cusp∞ associated with Γ0(10):
Ek,10∞ (z) := 10kEk(10z)−5kEk(5z)−2kEk(2z) +Ek(z)
(5k−1)(2k−1) fork>4. (3.239)
For the cusp 0 We have Γ0 ={±(10n1 01) ;n∈Z} and γ0 =W10, and we have the Eisenstein series for the cusp 0 associated with Γ0(10):
Ek,100 (z) := 10k/2(Ek(10z)−Ek(5z)−Ek(2z) +Ek(z))
(5k−1)(2k−1) fork>4. (3.240) We also haveγ0−1 Γ0(10)γ0= Γ0(10).
For the cusp −1/2 We have Γ−1/2 =©
±¡10n+1 5n
−20n −10n+1
¢; n∈Zª
and γ−1/2 =W10,5, and we have the Eisenstein series for the cusp−1/2 associated with Γ0(10):
Ek,10−1/2(z) := −5k/2(2kEk(10z)−Ek(5z)−2kEk(2z) +Ek(z))
(5k−1)(2k−1) fork>4. (3.241) We also haveγ−1/2−1 Γ0(10)γ−1/2= Γ0(10).
For the cusp −1/5 We have Γ−1/5 =©
±¡10n+1 2n
−50n −10n+1
¢; n∈Zª
and γ−1/5 =W10,2, and we have the Eisenstein series for the cusp−1/5 associated with Γ0(10):
Ek,10−1/5(z) := −2k/2(5kEk(10z)−5kEk(5z)−Ek(2z) +Ek(z))
(5k−1)(2k−1) fork>4. (3.242) We also haveγ−1/5−1 Γ0(10)γ−1/5= Γ0(10).
The space of modular forms We define
∆8,1,10:= (E2/3,100)2(∆010)2(∆−1/210 )2(∆−1/510 )2∆10, ∆8,2,10:= (E2/3,100)2(∆∞10)2(∆−1/210 )2(∆−1/510 )2∆10,
∆8,3,10:= (E2/3,100)2(∆∞10)2(∆010)2(∆−1/510 )2∆10, ∆8,4,10:= (E2/3,100)2(∆∞10)2(∆010)2(∆−1/210 )2∆10,
∆8,5,10:= (∆010)2∆−1/210 ∆−1/510 (∆10)2, ∆8,6,10:= (∆∞10)2∆−1/210 ∆−1/510 (∆10)2,
∆8,7,10:= ∆∞10∆010(∆−1/510 )2(∆10)2, ∆8,8,10:= ∆∞10∆010(∆−1/210 )2(∆10)2. Now, we have
Mk(Γ0(10)) =CEk,10∞ ⊕CEk,100 ⊕CEk,10−1/2⊕CEk,10−1/5⊕Sk(Γ0(10)), Sk(Γ0(10)) = (C∆8,1,10⊕C∆8,2,10⊕C∆8,3,10⊕C∆8,4,10⊕C∆8,5,10
⊕C∆8,6,10⊕C∆8,7,10⊕C∆8,8,10⊕C(∆10)3)Mk−8(Γ0(10))
0
for every even integerk>4. Then, we haveM8n+2(Γ0(10)) =E2,10+20M8n(Γ0(10))⊕CE2,10+100(∆10)3n⊕ CE2,10+50(∆10)3n,M8n+6(Γ0(10)) =E2,10+20M8n+4(Γ0(10))⊕C(E2,10+100)3(∆10)3n⊕C(E2,10+50)3(∆10)3n, and
M8n(Γ0(10)) =C(E8,10∞ )n⊕C(E8,10∞ )n−1∆8,1,10⊕C(E∞8,10)n−1∆8,5,10
⊕C(E8,10∞ )n−1(∆10)3⊕ · · · ⊕C∆8,5,10(∆10)3(n−1)
⊕C(E8,100 )n⊕C(E08,10)n−1∆8,2,10⊕C(E8,100 )n−1∆8,6,10
⊕C(E8,100 )n−1(∆10)3⊕ · · · ⊕C∆8,6,10(∆10)3(n−1)
⊕C(E8,10−1/2)n⊕C(E8,10−1/2)n−1∆8,3,10⊕C(E−1/28,10 )n−1∆8,7,10
⊕C(E8,10−1/2)n−1(∆10)3⊕ · · · ⊕C∆8,7,10(∆10)3(n−1)
⊕C(E8,10−1/5)n⊕C(E8,10−1/5)n−1∆8,4,10⊕C(E−1/58,10 )n−1∆8,8,10
⊕C(E8,10−1/5)n−1(∆10)3⊕ · · · ⊕C∆8,8,10(∆10)3(n−1)⊕C(∆10)3n, M8n+4(Γ0(10)) =E∞4,10(C(E8,10∞ )n⊕C(E8,10∞ )n−1∆8,1,10⊕C(E∞8,10)n−1∆8,5,10
⊕C(E8,10∞ )n−1(∆10)3⊕ · · · ⊕C∆8,5,10(∆10)3(n−1)⊕C(∆10)3n)
⊕E4,100 (C(E08,10)n⊕C(E08,10)n−1∆8,2,10⊕C(E8,100 )n−1∆8,6,10
⊕C(E8,100 )n−1(∆10)3⊕ · · · ⊕C∆8,6,10(∆10)3(n−1)⊕C(∆10)3n)
⊕E4,10−1/2(C(E8,10−1/2)n⊕C(E8,10−1/2)n−1∆8,3,10⊕C(E8,10−1/2)n−1∆8,7,10
⊕C(E8,10−1/2)n−1(∆10)3⊕ · · · ⊕C∆8,7,10(∆10)3(n−1)⊕C(∆10)3n)
⊕E4,10−1/5(C(E8,10−1/5)n⊕C(E8,10−1/5)n−1∆8,4,10⊕C(E8,10−1/5)n−1∆8,8,10
⊕C(E8,10−1/5)n−1(∆10)3⊕ · · · ⊕C∆8,8,10(∆10)3(n−1)⊕C(∆10)3n)
⊕(C∆∞10∆010⊕C∆010∆−1/210 ⊕C∆−1/210 ∆−1/510 )(∆10)3n+1.
Furthermore, we can write
Mk(Γ0(10)) =Ek,100(C(∆∞10)n⊕C(∆∞10)n−1∆010⊕ · · · ⊕C(∆010)n),
wheren= dim(Mk(Γ0(10)))−1 =b3k/2−2(k/4− bk/4c)c, and whereEk,100:= 1 and E2/3,10+20, when k≡0 and 2 (mod 4), respectively.
Hauptmodul We define thehauptmodul of Γ0(10):
J10:= ∆010/∆∞10(=η3(z)η−1(2z)η(5z)η−3(10z)) = 1
q −3 +q+ 2q2+ 2q3− · · · , (3.243) wherev∞(J10) =−1 andv0(J10) = 1. Then, we have
J10: {|z+ 1/10|= 1/10,−1/106Re(z)60} →[−4,0]⊂R,
{|z+ 3/10|= 1/10,−2/56Re(z)6−3/10} → {−46Re(z)<−3.8,06Im(z)62}, {|z−3/10|= 1/10,1/56Re(z)63/10} → {−46Re(z)<−3.8,−26Im(z)60}, {|z+ 9/20|= 1/20,−1/26Re(z)6−2/5} →[−5,−4]⊂R.
(3.244)
Thus,J10 does not take real value on some arcs of∂F10.
Location of the zeros of the Eisenstein series Since W10−1Γ0(10)W10 = W10,5−1Γ0(10)W10,5 = W10,2−1Γ0(10)W10,2= Γ0(10), we have
(√
10z)−kEk,100 (W10z) = (2√ 5z+√
5)−kEk,10−1/2(W10,5z) = (5√
2z+ 2√
2)−kEk,10−1/5(W10,2z) =Ek,10∞ (z).
Lower arcs of∂F10
-5 -4 -3 -2 -1
-2 -1 1 2
Figure 3.68: Image byJ10
Furthermore, we have
Ek,100 (−1/2 +i/(2 tan(θ/2))) = ((eiθ−1)/√
10)kEk,10∞ ((eiθ−1)/10), Ek,100 ((eiθ1+ 3)/8) = ((eiθ−3)/√
10)kEk,10∞ ((eiθ−3)/10), Ek,100 ((ei(π−θ1)−3)/8) = ((3eiθ−1)/√
10)kEk,10∞ ((eiθ+ 3)/10), E0k,10((eiθ2−9)/20) = ((5eiθ−1)/(2√
10))kEk,10∞ ((eiθ−9)/20), Ek,10−1/2((eiθ3−1)/10) = ((3eiθ+ 2)/√
5)kEk,10∞ ((eiθ−1)/10), Ek,10−1/2((eiθ4−1)/6) = ((eiθ+ 2)/√
5)kEk,10∞ ((eiθ−3)/10), Ek,10−1/2((ei(π−θ4)−1)/6) = ((eiθ+ 1)/√
5)kEk,10∞ ((eiθ+ 3)/10), Ek,10−1/2(itan(θ/2)/2) = ((eiθ+ 1)/(2√
5))kEk,10∞ ((eiθ−5)/20), Ek,10−1/5(−1/2 +itan(θ/2)/10) = ((eiθ+ 1)/√
2)kEk,10∞ ((eiθ−1)/10), Ek,10−1/5(−3/10 +itan(θ/2)/10) = ((eiθ+ 1)/√
2)kEk,10∞ ((eiθ−3)/10), Ek,10−1/5(3/10 +itan(θ/2)/10) = ((eiθ+ 1)/√
2)kEk,10∞ ((eiθ+ 3)/10), Ek,10−1/5(itan(θ/2)/5) = ((eiθ−1)/(2√
2))kEk,10∞ ((eiθ−9)/20),
where eiθ1 = (−3 + 5 cosθ+ 4isinθ)/(5−3 cosθ), eiθ2 = (21−29 cosθ+ 20isinθ)/(29−21 cosθ), eiθ3 = (−12−13 cosθ+ 5isinθ)/(13 + 12 cosθ), andeiθ4= (4 + 5 cosθ+ 3isinθ)/(5 + 4 cosθ).
Ek,10∞ -12 -25 -15 0 15 25 12 Ek,100 -12 -25 -15 0 15 25 12
Ek,10−1/2 -12 -25 -15 0 15 25 12 Ek,10−1/5 -12 -25 -15 0 15 25 12
Figure 3.69: Location of the zeros of the Eisenstein series
Now, we can observe that the zeros of Ek,10∞ do not lie on the arcs of ∂F10 for small weight k by numerical calculation. However, when the weight k increases, then the location of the zeros seems to
0
approach to lower arcs of∂F10. (See Figure 3.70)
Location of the zeros of Hecke type Faber Polynomial We can observe that some zeros ofFm,10
do not lie on the lower arcs of ∂F10 for small weight m by numerical calculation. However, when the weight mincreases, then the location of the zeros seems to approach to lower arcs of∂F10. (see Figure 3.71)
-5 -4 -3 -2 -1
-2 -1 1 2
The zeros of Ek,10∞ for 46k640
-5 -4 -3 -2 -1
-2 -1 1 2
The zeros ofE1000,10∞
Figure 3.70: Image byJ10
0
-5 -4 -3 -2 -1
-2 -1 1 2
The zeros of Fm,10 form640
-5 -4 -3 -2 -1
-2 -1 1 2
The zeros ofF200,10
Figure 3.71: Image byJ10