• 検索結果がありません。


should be preferred for establishment of M. azedarach plantations for structural purposes in Vietnam.

However, in the future, further experiments will be needed to determine the effect of seed source on variation in wood properties for M. azedarach planted in northern Vietnam.


1. Abdul WM (2007) Physical and mechanical properties of noncommercial timbers of NWFP. In:

A project titled “Strengthening the forest products research at PFI, Peshawar”. Pakistan Forest Institute (SFPR), Peshawar, Pakistan

2. Adamopoulos S, Chavenetidou M, Passialis C, Voulgaridis E (2010) Effect of cambium age and ring width on density and fiber length of Black locust and Chestnut wood. Wood Res 55(3):25-36 3. Anagnost SE, Mark RE, Hanna RB (2005) S2 orientation of microfibrils in softwood tracheids and

hardwood fibers. IAWA J 26:325-338

4. Anoop EV, Jijeesh CM, Sindhumathi CR, Jayasree CE (2014) Wood physical, anatomical and mechanical properties of big leaf Mahogany (Swietenia macrophylla Roxb) a potential exotic for south India. Res J Agric For Sci 2(8):7-13

5. Barber NF, Meylan BA (1964) The anisotropic shrinkage of wood. Holzforschung 18(5):146-156 6. Botero FA (1956) Métodos de ensaios adotados no IPT para o estudo de madeiras nacionais.

Tabelas e resultados obtidos para madeiras nacionais (in Spanish). Instituto de Pesquisas Tecnologicas, São Paul, Brasil, Boletim No. 131

7. Bowyer JL, Shmulsky R, Haygreen JG (2007) Forest products and wood science: An introduction (fifth edition). Blackwell Publishing, Iowa 50014, USA

8. Bucur V (1983) An ultrasonic method for measuring the elastic constants of wood increment cores bored from living trees. Ultrasonics 21:116-126

9. Buntgen U, Esper J, Frank DC, Nicolussi K, Schmidhalter M (2005) A 1052-year tree-ring proxy for Alpine summer temperatures. Clim Dyn 25:141-153


10. Carter P, Briggs D, Ross RJ, Wang X (2005) Acoustic testing to enhance western forest values and meet customer wood quality needs. USDA Forest Service General Technical Reports PNW 642:121-129

11. Cave ID, Walker JCF (1994) Stiffness of wood in fast-grown plantation softwoods: The influence of microfibril angle. For Prod J 44(5):43-48

12. Coronel EO (1989) Estudio y determinación de las propiedades físico-mecánicas de las maderas del Parque Chaqueño. Valores y variaciones, 1a Parte (in Spanish). Universidad Nacional de Santiago del Estero, Serie de Publicaciones No. 8906

13. Cown DJ, Hebert J, Ball R (1999) Modelling Pinus radiata lumber characteristic. Part 1:

Mechanical properties of small clears. NZ J For Sci 29:203-213

14. Dahlblom O, Petersson H, Ormarsson S (1999) Characterization of shrinkage. European project FAIR CT 96-1915, improved Spruce timber utilization. Lund Institute of Technology, Lund University, Scania, Sweden

15. Dinwoodie JM (1961) Tracheid and fiber length in timber: A review of literature. Forestry 34(2):125-144

16. Donaldson LA (1992) Within- and between-tree variation in microfibril angle in Pinus radiata.

NZ J For Sci 22(1):77-86

17. Donaldson LA (2008) Microfibril angle: Measurement, variation and relationships – A review.

IAWA J 29(4):345-386

18. Dundar T, Wang X, As N, Avci E (2016) Potential of ultrasonic pulse velocity for evaluating the dimensional stability of oak and chestnut wood. Ultrasonics 66:86-90

19. Dundar T, Wang X, Ross RJ (2013) Prediction of transverse shrinkages of young-growth Sitka spruce (Picea sitchensis) and western hemlock (Tsuga heterophylla) with ultrasonic measurements. Wood Mat Sci Eng 8(4):234-241

20. Duong DV, Matsumura J (2018) Within-stem variations in mechanical properties of Melia azedarach planted in northern Vietnam. J Wood Sci 64(4):329-337

21. Duong DV, Missanjo E, Matsumura J (2017) Variation in intrinsic wood properties of Melia azedarach L. planted in northern Vietnam. J Wood Sci 63(6):560-567

22. Einspahr DW, Van Buijtenen JP, Peckham JR (1963) Natural variation and heritability in triploid Aspen. Silvae Genet 12(2):51-58

23. EL-Juhany LI (2011) Evaluation of some wood quality measures of eight-year-old Melia azedarach trees. Turk J Agric For 35:165-171

24. Evans R, Ilic J (2001) Rapid prediction of wood stiffness from microfibril angle and density. For Prod J 51(3):53-57

25. Evans R, Stringer S, Kibblewhite RP (2000) Variation of microfibril angle, density and fibre orientation in twenty-nine Eucalyptus nitens trees. Appita J 53(5):450-457

26. Fang S, Wenzhong Y, Ye T (2006) Clonal and within-tree variation in microfibril angle in poplar clones. New For 31:373-383

27. Forest Products Laboratory (FPL) (2010) Wood handbook-Wood as an engineering material.

General technical report FPL-GTR-190. United States Department of Agriculture Forest Service.

Madison, Wisconsin

28. Forestry and Forest Products Research Institute (FFPRI) (1975) The properties of tropical woods 21: evaluation of wood properties and wood processing suitabilities of timber from Southeast Asia and the Pacific regions. Bulletin Gov For Exp Station 277:87-130

29. Frank D, Esper J (2005) Characterization and climate response patterns of a high-elevation, multi-species tree-ring network in the European Alps. Dendrochronologia 22:107-121

30. Fu Z, Zhao J, Yang Y, Cai Y (2016) Variation of drying strains between tangential and radial


31. Fuwape JA, Fabiyi JS (2003) Variations in strength properties of plantation grown Nauclea diderrichii wood. J Trop For Prod 9:45-53

32. Gartner BL, Lei H, Milota MR (1997) Variation in the anatomy and specific gravity of wood within and between trees of red alder (Alnus rubra Bong.). Wood Fiber Sci 29(1):10-20

33. Green DW, Winandy JE, Kretschmann DE (1999) Mechanical properties of wood. In: USDA Forest Service FPL. editor. Wood handbook: wood as an engineering material, vol 4, Madison WI 34. Harrison NA, Boa E, Carpio ML (2003) Characterization of phytoplasmas detected in Chinaberry

trees with symptoms of leaf yellowing and decline in Bolivia. Plant Pathol 52:147-157

35. Hasegawa M, Mori M, Matsumura J (2015) Relations of fiber length to within-tree variation of ultrasonic wave velocity in fast-growing trees. Wood Fiber Sci 47(3):313-318

36. Hein PRG, Lima JT (2012) Relationships between microfibril angle, modulus of elasticity and compressive strength in Eucalyptus wood. Maderas Cienc Tecnol 14(3):267-274

37. Henry M, Besnard A, Asante WA, Eshun J, Adu-Bredu S, Valentini R, Bernoux M, Saint-Andre L (2010) Wood density, phytomass variations within and among trees, and allometric equations in a tropical rainforest of Africa. For Ecology and Manag 260:1375-1388

38. Hien LT, Ban DV, Kim NT (2012) Physical and mechanical characteristics and uses of some production forest species in southeastern Vietnam (in Vietnamese). Dissertation, Forest Science Institute of Vietnam

39. Honjo K, Furukawa I, Sahri MH (2005) Radial variation of fiber length increment in Acacia mangium. IAWA J 26(3):339-352

40. IAWA Committee (1989) IAWA list of microscopic features for hardwood identification. IAWA J 10:219-332

41. Igartua DV, Moreno K, Piter JC, Monteoliva S (2015) Density and mechanical properties of Argentinean Acacia melanoxylon (in Spanish). Maderas Cienc Tecnol 17(4):809-820

42. Ikeda K, Arima T (2000) Quality evaluation of standing trees by a stress-wave propagation method and its application II. Evaluation of sugi stands and application to production of sugi (Cryptomeria japonica D. Don) structural square sawn lumber (in Japanese). Mokuzai Gakkaishi 46:189–196 43. Image-J software used is available at https://imagej.nih.gov/ij/

44. Ishiguri F, Eizawa J, Saito Y, Iizuka K, Yokota S, Priadi D, Sumiasri N, Yoshizawa N (2007) Variation in the wood properties of Paraserianthes falcataria planted in Indonesia. IAWA J 28(3):339-348

45. Ishiguri F, Hiraiwa T, Iizuka K, Yokota S, Priadi D, Sumiasri N, Yoshizawa N (2012) Radial variation in microfibril angle and compression properties of Paraserianthes falcataria planted in Indonesia. IAWA J 33(1):15-23

46. Ishiguri F, Hiraiwa T, Lizuka K, Yokota S, Priadi D, Sumiasri N, Yoshizawa N (2009) Radial variation of anatomical characteristics in Paraserianthes falcataria planted in Indonesia. IAWA J 30(3):343-352

47. Ishiguri F, Kawashima M, Iizuka K, Yokota S, Yoshizawa N (2006) Relationship between stress-wave velocity of standing tree and wood quality in 27-year-old Hinoki (Chamaecyparis obtusa Endl.). J Soc Mat Sci Japan 55(6):576-582

48. Ishiguri F, Matsui R, Iizuka K, Yokota S, Yoshizawa N (2008) Prediction of the mechanical properties of lumber by stress-wave velocity and Pilodyn penetration of 36-year-old Japanese larch trees. Holz Roh Werkst 66:275-280

49. Ishiguri F, Wahyudi I, Takeuchi M, Takashima Y, Iizuka K, Yokota S, Yoshizawa N (2011) Wood properties of Pericopsis mooniana grown in a plantation in Indonesia. J Wood Sci 57:241-246 50. Istikowati WT, Ishiguri F, Aiso H, Hidayati F, Tanabe J, Iizuka K, Sutiya B, Wahiudy I, Yokota

S (2014) Physical and mechanical properties of woods from three native fast-growing species in


strength, and shrinkage in juvenile wood of radiate pine. Wood Sci Technol 43:237-257

52. Izekor DN, Fuwape JA, Oluyege AO (2010) Effects of density on variations in the mechanical properties of
plantation grown Tectona grandis wood. Arch Appl Sci Res 2(6):113-120

53. JIS Z2101-1994 (2000) Methods of test for woods (in Japanese). Japanese Standard Association, Tokyo, Japan

54. Johansson CJ, Steffen A, Wormuth EW (1996) Relation of moduli of elasticity in flatwise and edgewise bending of solid timber. International council for building research studies and documentation, pp 311-321

55. Johnson GR, Gartner BL (2006) Genetic variation in basic density and modulus of elasticity of coastal Douglas-fir. Tree Genet Genomes 3:25-33

56. Jozsa LA, Middleton GR (1994) A discussion of wood quality attributes and their practical implications. Special publication No. SP-34. Forintek Canada Corp. Vancouver, BC

57. Kaiserlik JH and Pellerin RF (1977) Stress wave attenuation as an indicator of lumber strength.

For Prod J 27(6):39-43

58. Kamala FD (2012) Study on wood properties variation and utilization of Pinus patula families grown in Malawi. PhD thesis, Kyushu University, Japan

59. Kamala FD, Sakagami H, Matsumura J (2014) Mechanical properties of small clear wood specimens of Pinus patula planted in Malawi. Open J For 4(1):8-13

60. Kamala FD, Sakagami H, Oda K, Matsumura J (2013) Wood density and growth ring structure of Pinus patula planted in Malawi, Africa. IAWA J 34(1):61-70

61. Keunecke D, Sonderegger W, Pereteanu K, Luthi T, Niemz P (2007) Determination of young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves. Wood Sci Technol 41:309-327

62. Kiaei M, Naji HR, Abdul-Hamid H, Farsi M (2016) Radial variation of fiber dimensions, annual ring width, and wood density from natural and plantation trees of alder (Alnus glutinosa) wood.

Wood Res 61(1):55-64

63. Kim NT (2009) Study on improvement of the wood qualities of Acacia hybrids in Vietnam. PhD thesis, Kyushu University, Japan

64. Kim NT, Ochiishi M, Matsumura J, Oda K (2008) Variation in wood properties of six natural acacia hybrid clones in northern Vietnam. J Wood Sci 54:436-442

65. Knapic S, Louzada JL, Leal S, Pereira H (2008) Within-tree and between-tree variation of wood density components in cork oak trees in two sites in Portugal. Forestry 81(4):465-473

66. Knapic S, Louzada JL, Pereira H (2011) Variation in wood density components within and between Quercus faginea trees. Can J For Res 41(5):1212-1219

67. Koga S, Zang SY (2004) Inter-tree and intra-tree variations in ring width and wood density components in balsam fir (Abies balsamea). Wood Sci Technol 38:149-162

68. Kord B, Kialashaki A, Kord B (2010) The within-tree variation in wood density and shrinkage, and their relationship in Populus euramericana. Turk J Agric For 34:121-126

69. Larocque GR (1997) Importance of different climatic parameters on growth and wood formation of red pine (Pinus resinosa Ait.) in Ontario, Canada. Ann For Sci 54(1):51-63

70. Larson PR (1994) The vascular cambium. Development and structural. Springer, Berlin

71. Leal S, Sousa VB, Pereira H (2006) Within and between-tree variation in the biometry of wood rays and fibres in cork oak (Quercus suber L.). Wood Sci Technol 40:585-597

72. Lei H, Milota MR, Gartner BL (1996) Between- and within-tree variation in the anatomical and specific gravity of wood in Oregon white oak (Quercus garryana Doulg). IAWA J 17(4):445-461 73. Lin CJ, Chung CH, Cho CL, Yang TH (2012) Tree ring characteristics of 30-year-old Swietenia


74. Machado JS, Louzada JL, Santos AJA, Nunes L, Anjos O, Rodrigues J, Simoes RMS, Pereira H (2014) Variation of wood density and mechanical properties of blackwood (Acacia melanoxylon R. Br.). Mater Des 56:975-980

75. Matsumura J, Inoue M, Yokoo K, Oda K (2006) Cultivation and utilization of Japanese fast growing trees with high capability for carbon stock I: potential of Melia azedarach (in Japanese).

Mokuzai Gakkaishi 52(2):77-82

76. Ministry of Agriculture and Rural Development of Vietnam (2014) Vietnam forestry development strategy from 2014 to 2020 (in Vietnamese). Hanoi, Vietnam

77. Ministry of Agriculture and Rural Development of Vietnam (2017) Annual report on forest area of Vietnam (in Vietnamese). https://www.mard.gov.vn/Pages/bo-nn-ptnt-cong-bo-hien-trang-rung-toan-quoc-nam-2016-33834.aspx

78. Missanjo E (2017) Genetic parameters and improvement strategies of wood properties and growth traits of Pinus kesiya planted in Malawi. PhD thesis, Kyushu University, Japan

79. Missanjo E, Matsumura J (2016) Wood density and mechanical properties of Pinus kesiya Royle ex Gordon in Malawi. Forests 7(7), 135

80. Montero MJ, Mata J, Esteban M, Hermoso E (2015) Influence of moisture content on the wave velocity to estimate the mechanical properties of large cross-section pieces for structural use of Scots pine from Spain. Maderas Cienc Tecnol 17(2):407-420

81. Montes CS, Beaulieu J, Hernander RE (2007) Genetic variation in wood shrinkage and its correlations with tree growth and wood density of Calycophyllum spruceanum at an early wood in the Peruvian Amazon. Can J For Res 37:966-976

82. Nanami N, Nakamura N, Arima T, Okuma M (1993) Measuring the properties of standing trees with stress waves III. Evaluating the properties of standing trees for some forest stands (in Japanese). Mokuzai Gakkaishi 39:903–909

83. Nghia NH (2007) Atlas of Vietnam’s forest tree species. Agric Publ House 1:242

84. Nicholas I, Brown I (2002) Blackwood a handbook for growers and users. Rotorua, New Zealand 85. Nicholls JWP (1986) Within-tree variation in wood characteristics of Pinus radiata D.Don.

Austral For Res 16:313-335

86. Niklas KJ, Spatz HC (2010) Worldwide correlations of mechanical properties and green wood density. Am J Bot 97(10):1587-1594

87. Njana MA, Meilby H, Eid T, Zahabu E, Malimbwi RE (2016) Importance of tree basic density in biomass estimation and associated uncertainties: a case of three mangrove species in Tanzania.

Ann For Sci 73:1073-1087

88. Nock CA, Geihofer D, Grabner M, Baker PJ, Bunyavejchewin S, Hietz P (2009) Wood density and its radial variation in six canopy tree species differing in shade-tolerance in western Thailand.

Ann Bot 104:297-306

89. Ocloo JK, Laing E (2003) Correlation of relative density and strength properties with anatomical properties of the wood of Ghanaian Celtis species. Discovery and Inovation 15:186-196

90. Ofori J, Brentuo B (2005) Green moisture content, basic density, shrinkage and drying characteristics of the wood of Cedrela odorata grown in Ghana. J Trop For Sci 17(2):211-223 91. Oleksyn J, Fritts HC (1991) Influence of climate factors upon tree rings of Larix decidua and L.

decidua × L. kaempferi from Pulawy, Poland. Trees 5:75-82

92. Oliveira FGR, Campos JAO, Sales A (2002) Ultrasonic measurements in Brazilian hardwood.

Mater Res 5(1):51-55

93. Oliveira FGR, Candian M, Lucchette DD, Salgon JL, Sales A (2005). A technical note on the relationship between ultrasonic velocity and moisture content of Brazilian hardwood (Goupia glabra). Build Environ 40(2):297-300

94. Orwa C, Jamnadass RH, Kindt R, Mutua A, Simons A (2009) Agroforestree database: a tree


95. Osei AK, Kimaro AA, Peak D, Gillespie AW, Van Rees KCJ (2018) Soil carbon stocks in planted woodlots and Ngitili systems in Shinyanga, Tanzania. Agroforest Syst 92:251-262

96. Panshin AJ, De Zeeuw C (1980) Textbook of wood technology (4th Edition). McGraw-Hill, New York

97. Payn T, Carnus JM, Smith PF, Kimberley M, Kollert W, Liu S, Orazio C, Rodriguez L, Silva LN, Wingfield MJ (2015) Changes in planted forests and future global implications. For Ecology Manag 352:57-67

98. Pentoney RE (1953) Mechanisms affecting tangential vs radial shrinkage. For Prod J 3(2):27- 33 99. Pliura A, Yu Q, Zhang SY, Mackay J, Perinet P, Bousquet J (2005) Variation in wood density and

shrinkage and their relationship to growth of selected young poplar hybrid crosses. For Sci 51(5):472-482

100. Posta J, Ptacek P, Jara R, Terebesyova M, Kuklik P, Dolejs J (2016) Correlations and differences between methods for non-destructive evaluation of timber elements. Wood Res 61(1):129-140

101. Pramana GSJ (1998) Holzeigenschaften und Verwendungsmöglichkeiten von Melia azedarach L. aus forstlichem Anbau auf Java (in German). Dissertation, Universität Göttingen.

Cuvillier XXI, Göttingen

102. R-software and all packages used are available from CRAN at https://cran.r-project.org 103. Rahman MK, Asaduzzaman M, Rahman MM, Das AK, Biswas SK (2014) Physical and

mechanical properties of Ghora neem (Melia azedarach) plywood. Bangladesh J Sci Ind Res 49(1):47-52

104. Richter HG, Dallwitz MJ (2000) Commercial timbers: descriptions, illustrations, identification, and information retrieval. Version: 25th June 2009. http://delta-intkey.com. Accessed 24 February 2017

105. Ross R, Pellerin R (1994) Nondestructive testing for assessing wood members in structures:

A review. U.S. Department of Agriculture. Forest Products Laboratory. Technical Report: 70, Madison, p 42

106. Ross RJ, McDonald KA, Green DW, Schad KC (1997) Relationship between log and lumber modulus of elasticity. For Prod J 47(2):89-92

107. Ross RJ, Pellerin RF (1988) NDE of wood-based composites with longitudinal stress waves.

For Prod J 38(5):39-45

108. Rozenberg P, Franc A, Mamdy C, Launay J, Schermann N, Bastien JC (1999) Genetic control of stiffness of standing Douglas fir from the standing stem to the standardized wood sample, relationships between modulus of elasticity and wood density parameters. Part II. Ann For Sci 56(2):145-154

109. Sadegh AN, Kiaei M, Samariha A (2012) Experimental characterization of shrinkage and density of Tamarix aphylla wood. Cellulose Chem Technol 46:369-373

110. Sales A, Candian M, Cardin VS (2011) Evaluation of the mechanical properties of Brazilian lumber (Goupia glabra) by nondestructive techniques. Constr Build Mater 25:1450-1454 111. Salmen L, Burgert I (2009) Cell wall features with regard to mechanical performance. A

review COST Action E35 2004-2008: Wood machining-micromechanics and fracture.

Holzforschung 63(2):121-129

112. Shanavas A, Kumar BM (2006) Physical and mechanical properties of three agroforestry tree species from Kerala, India. J Trop Agric 44:23-30

113. Sharma CL, Sharma M, Jamir L (2014) Radial variation in wood properties of plantation grown Terminalia myriocarpa Heurck and Muell-Arg in Nagaland, India. Res J Recent Sci 3:9-14


114. Sharma SK, Rao RV, Shukla SR, Kumar P, Sudheendra R, Sujatha M, Dubey YM (2005) Wood quality of coppiced Eucalyptus tereticornis for value addition. IAWA J 26(1):137–


115. Shmulsky R, Jones PD (2011) Forest products and wood science: An Introduction, 6th ed.

Wiley-Blackwell, Chichester, UK

116. Skaar C (1988) Wood-water relations, Springer, Berlin Heidelberg, New York

117. Taylor FW (1977) Variation in specific gravity and fiber length of selected hardwoods throughout the Mid-South. For Sci 23(2):190-194

118. Taylor FW, Wooten TE (1973) Wood property variation of Mississipi Delta hardwoods.

Wood Fiber Sci 5(1):2-13

119. Todoroki CL, Low CB, McKenzie HM, Gea LD (2015) Radial variation in selected wood properties of three cypress taxa. NZ J For Sci 45:24

120. Trianoski R, Iwakiri S, Matos JLM (2011) Potential use of planted fast-growing species for production of particleboard. J Trop For Sci 23(3):311-317

121. Uetimane JE, Ali AC (2011) Relationship between mechanical properties and selected anatomical features of ntholo (Pseudolachnostylis maprounaefolia). J Trop For Sci 23(2):166-176

122. Usta A, Yilmaz M, Kahveci E, Yilmaz S, Ozturk H (2014) Effects of different site conditions on some of the wood properties of Black alder (Alnus glutinosa (L.) Gaertner subsp. barbata (C.A Meyer) Yalt). Fresenius Environ Bulletin 23(8):1840-1851

123. Vainio U, Andersson S, Serimaa R, Paakkari T, Saranpaa P, Treacy M, Evertsen J (2002) Variation of microfibril angle between four provenances of Sitka spruce (Picea sitchensis (Bong.) Carr.). Plant Biol 4:27-33

124. Van Buijtenen JP, Einspahr DW, Peckham JR (1962) Natural variation in Populus tremuloides Michx. II. Variation in pulp and papermaking properties. Tappi 45(1):58-61

125. Van Eck WA, Woessner RA (1964) A study of wood density in yellow poplar and red oak as related to environment. West Virginia Acad Sci 36, p 8

126. Vazquez C, Goncalves R, Bertoldo C, Bano V, Vega A, Crespo J, Guaita M (2015) Determination of the mechanical properties of Castanea sativa Mill. using ultrasonic wave propagation and comparison with static compression and bending methods. Wood Sci Technol 49:607-622

127. Venson I, Guzman JAS, Talavera FJF, Richter HG (2008) Biological, physical and mechanical wood properties of Paraiso (Melia azedarach) from a roadside planting at Huaxtla, Jalisco, Mexico. J Trop For Sci 20(1):38-47

128. Wahyudi I, Ishiguri F, Makino K, Aiso H, Takashima Y, Ohshima J, Iizuka K, Yokota S (2016) Evaluation of xylem maturation and the effects of radial growth rate on anatomical characteristics and wood properties of Azadirachta excelsa planted in Indonesia. J Ind Acad Wood Sci 13(2):138-144

129. Walker JCF, Butterfield BG (1995) The importance of microfibril angle for the processing industries. NZ For 40(3):34-40

130. Walker JCF, Butterfield BG, Harris JM, Langrish TAG, Uprichar JM (1993) Primary wood processing: Principles and practice. Chapman and Hall, London SE1 8HN, UK

131. Wang E, Chen T, Pang S, Karalus A (2008) Variation in anisotropic shrinkage of plantation grown Pinus radiata wood. Maderas Cienc Tecnol 10(3):243-249

132. Wang X, Ross RJ, McClellan M, Barbour RJ, Erickson JR, Forsman JW, McGinnis GD (2001) Nondestructive evaluation of standing trees with a stress wave method. Wood Fiber Sci 33(4):522-533

133. Wang X, Simpson WT (2006) Using acoustic analysis to presort warp-prone ponderosa pine


134. Wassenberg M, Chiu HS, Guo W, Spiecker H (2015) Analysis of wood density profiles of tree stems: incorporating vertical variations to optimize wood sampling strategies for density and biomass estimations. Trees 29:551-561

135. Widmann R (2011) Grading of thermally modified beech. Proceedings of the 17th international nondestructive testing and evaluation of wood symposium 1:293-298

136. Wiemann MC, Williamson GB (2002) Geographic variation in wood specific gravity:

effects of latitude, temperature, and precipitation. Wood Fiber Sci 34(1):96-107

137. Woodcock DW (1989) Climatic sensitivity of wood-anatomical features in a ring-porous oak (Quercusmacrocarpa). Can J For Res 19:639-644

138. Wu YQ, Hayashi K, Liu Y, Cai Y, Sugimori M (2006) Relationships of anatomical characteristics versus shrinkage and collapse properties in plantation-grown eucalypt wood from China. J Wood Sci 52(3):187-194

139. Yamashita K, Hirakawa Y, Fujisawa Y, Nakada R (2000) Effects of microfibril angle and density on variation of modulus of elasticity of sugi (Cryptomeria japonica) logs among eighteen cultivars (in Japanese). Mokuzai Gakkaishi 46(6): 510-522

140. Yamashita K, Hirakawa Y, Nakatani H, Ikeda M (2009a) Longitudinal shrinkage variations within trees of sugi (Cryptomeria japonica) cultivars. J Wood Sci 55:1-7

141. Yamashita K, Hirakawa Y, Nakatani H, Ikeda M (2009b) Tangential and radial shrinkage variation within trees in sugi (Cryptomeria japonica) cultivars. J Wood Sci 55:161-168 142. Yang JL, Evans R (2003) Prediction of MOE of eucalypt wood from microfibril angle and

density. Holz Roh Werkst 61(6):449-452

143. Yang JL, Fife D, Ilic J, Blackwell P (2002) Between-site and between-provenance differences in shrinkage properties of 10-year-old Eucalyptus globulus Labill. Aust For 65(4):220-226

144. Zang LY, Deng XW, Lei XD, Xiang WH, Peng CH, Lei PF, Yan WD (2012) Determining stem biomass of Pinus massoniana L. through variations in basic density. Forestry 85:601-609

145. Zhang B, Fei BH, Yu Y, Zhao RJ (2007) Microfibril angle variability in Masson pine (Pinus massoniana Lamb.) using X-ray diffraction. Forestry Studies China 9:33-38

146. Zhang SY, Zhong Y (1992) Structure-property relationship of wood in East-Liaoning oak.

Wood Sci Technol 26:139-149

147. Zhu J, Nakano T, Hirakawa Y (2000) Effect of radial growth rate on selected indices for juvenile and mature wood of Japanese larch. J Wood Sci 46(6):417-422

148. Zhuang L, Axmacher JC, Sang W (2017) Different radial growth responses to climate warming by two dominant tree species at their upper altitudinal limit on Changbai mountain. J For Res 28(4):795-804

149. Zobel BJ, Sprague JR (1998) Juvenile wood in forest trees. Springer, New York

150. Zobel BJ, Van Buijtenen JP (1989) Wood variation, its causes and control. Springer, Heidelberg